¥

.

c.3

SANDIA REPORT

SAND96-2027 « UC-705
Unlimited Release
Printed July 1996

Risk-Based Assessment of the Surety
of Information Systems

Roxana M. Jansma, Sharon K. Fletcher, Martin D. Murphy_du’d\._y J le ;Gfégory D. Wyss

Prepared by
Sandia National Laboratones ol
Albuquerque, New Mexico 87185 and Livermore, California 94550, :
for the United States Department of Energy .
under Contract DE~ACO4-94AL85000

Approved for public;ﬁreylease_‘; gistribdnon is _‘

SE2800Q(8-81)

REPORT DOCUMENTATION PAGE b N o o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reporis, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project {0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
blank) 7/1/1996 Report 7/1/1996
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Risk-Based Assessment of the Surety of Information Systems

6. AUTHOR(S)
Roxana M. Jansma, Sharon K. Fletcher, Martin D. Murphy,
Judy J. Lim, Gregory D. Wyss

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Booz Allen & Hamilton
8283 Greensboro Drive
McLean, VA 22102

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
Sandia National Laboratories

Albuquerque, New Mexico 87185

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12h. DISTRIBUTION CODE
Approved for public release; Distribution unlimited
A

13. ABSTRACT (Maximum 200 Words)

When softwareis usedin safety-critical, security-critical, or mission-criticalsituations, it
is imperative to understand and manage the risks involved. A risk assessment methodology
and toolset have been developed which are specific to software systems and address a broad
range of risks including security, safety, and correct operation. A unique aspect of this
methodology is the use of a modeling technique that captures interactions and tradeoffs
among risk mitigators.This paper describes the concepts and components of the methodology
and presents its application to example systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
IATAC Collection, information security, risk, firewall
71

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
208-102

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A04
Microfiche copy: A01

SAND96-2027 Distribution
Unlimited Release Category UC-705
Printed July 1996 -

Risk-Based Assessment of the Surety
of Information Systems

Roxana M. Jansma
Data Systems Security Department

Sharon K. Fletcher, Martin D. Murphy, and Judy J. Lim
Software Surety Department

Gregory D. Wyss
Risk Assessment and Systems Modeling Department

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

When software is used in safety-critical, security-critical, or mission-critical situations, it
is imperative to understand and manage the risks involved. A risk assessment
methodology and toolset have been developed which are specific to software systems and
address a broad range of risks including security, safety, and correct operation. A unique
aspect of this methodology is the use of a modeling technique that captures interactions
and tradeoffs among risk mitigators. This paper describes the concepts and components
of the methodology and presents its application to example systems.

Acknowledgments

The authors thank Ronald Halbgewachs for his insights into system vulnerabilities, Paul
Sands for his representation of a computer security viewpoint, and both of them for their
valuable contributions in other areas of the project. Special appreciation goes to Peter
Watterberg, who originated the approach developed in this project and provided
leadership and motivation in the important early stages of the work.

ii

Contents

T INEEOAUCTION ...ttt e eetes e eseeeessenssesesseesesessenssanee

2 Views Of Risk In Software Systems

3 Current Approaches To Risk Assessment For Information

SYSLEIIScoucverecerieerieirerieeseessressressssssssssssssessssesassssssssssnssassssssssssasens
3.1 The Case for Probabilistic Risk ASSESSMENLccocveurerervecerruececrecreneeneense
3.2 Analysis Techniques: Relative Strengths and Limitationscccu.....
3.3 Surety Evaluation Modeling Methodology..........ceeereremrernienercscrnercnneenes
4 Methodology ...ttt seesenens
4.1 OVEIVIEW..cuuiiirreirreiniereteseseeessunssreesesessssrassssssssssssssssssessssesesntossassssesssssssss
4.2 Supporting COMPONENLScccevveeierienrerenierecesstsnrecessenssnesuesseimessesnesssenes
4.2.1 Risk Identification MatriX........c.cocvvevernircrercecciicrnecninsrnnicscncensnenns
4.2.2 Risk Mitigators MatriX........cccceerereeeresiessreseeesrensseseessesiessescsssennees

4.3 Barrier ANALYSIS ..cccceivererieierereeceeniierieeesiisseeseseessenesssessssessseessessssessesesses
4.4 Threat AnalysiS.......ccoevurrrerreereecrenrenrenseenns feeeerereessersressneeeressareeessasareessnens
4.5 System Risk Model........cooioiiriieieiiecienenereeccsseeeseeeen e eee st esesaes
4.5.1 Introduction to Influence Diagrams..........ceceeveeevceerencennnicenecnnncnne
4.5.2 Building a Risk Model of an Information System.........cccccceueeuernnce.
4.5.3 Constructing a Sample Risk Modelcccceeveeirvreeenicsieninerccererenee.
4.5.4 Using Risk Matrices in the System Modelcccoevrviinviniinnnnnnns
4.5.5 Quantification of Node Probabilitiesccccceevervcenvnvcinninsinnnincnnnes
4.5.6 Enhanced Methods for Solving Influence Diagrams..............cc........

6 APPHCALIONS.........oceeeeicicctc st
T CONCIUSION ...t asnes

RCICTCIICES ..o eeeeeeeteeeseeeeeeneseneessesssasesessessassssesssssssssssessesssesnsannns

Publications, Other Papers, Presentations..............oooeninneenninennnes

APPENDIX -- Firewall Risk TaXxonomyccceversuvrncreennneenennsnennnns

iii

...

2.1 The First Generation (Rated Systems)........ccceeeeeeeeerererreecreenreeressneesanersnees
2.2 The Second Generation (Protecting ASSEtS)cccceereerreeeerererereecreeesnesanenns
2.3 The Third Generation (Managing Risk)......... eereesreeseeereeaaantesteraestesaaenanes

Figures

1 Risk ASSESSIMENT PrOCESS ..c..veriieiieniiinteieieeteeertearee s seeseasese st esaaesteseseasaesssesonenans 13
2 Risk Identification Matrix Example: Medical Decision Support System................ 14
3 Risk Mitigators Matrix Example: Medical Decision Support System...................... 17
4 Barrier Analysis Spreadsheet.........c.cocoeicnevniniinnin 18
5 Basic INfluence DIagram.........ccccovevevereeeiiecienenieneenteeereeeestestesnesetesesssecseneosaseseenes 19
6 Extended Influence Diagram SYmDbOISceceeveevivveenenenennnniiecennesreneesesenesenns 23
7 Example Risk Model COnStruction..........ceceviiinicicvmiieniisnenieiceeeesseiscsnessessenas 25
8 Probability Interval for Safeguards Effectiveness Evaluation ..o 28
9 An EmMPty RiSK MalIiX...cccieeriiecnriccinecesresiineessssssisssssssssssssmsesssssisssassassenas 39
10 A Risk Specification MatriXcccceovvrireniiniiiiniicciiniiiinicereeernesissae e esseesesnans 40
11 A Risk Specification Matrix with Sources of Risk Displayed..........cccceveveiinnnnins 40
12 Consequence Area and Severity Assignment Dialog BoX.......ccccovovieeninniiiiniencnns 41
13 A Populated Risk MatriXccoouiiiviniiinniciiiiieens e 42
14 Risk Sources or Mitigators Selection Tabs.........cccciii 42
15 A Partial Influence DIagramceceevenerreereneeiienincnriinccrisnisiesies et isssesneanes 43
16 Influence Diagram: Medical Decision Support System........ccccvvviievniiiiieenennnnnn. 45
17 Influence Diagram: Risk Assessment ToOl............cccooviniiiniiniiiecneee 47
Table

1

Conceptual Example COmMPULAtioncocevevviiiiiiiiiiinieciereien e 33

v

Risk-Based Assessment of the Surety
of Information Systems

1 INTRODUCTION

During recent years there has been a dramatic increase in the use and importance of
automated information systems in broad aspects of life. Along with this increased use
have come system failures causing the loss of money and compromise of information,
and potentially endangering human life. The importance of ensuring correct system
operation and understanding the risks of failures is increasing as well. After all, the
overarching goal is to produce systems that do what they are supposed to do and not what
they aren’t supposed to do; that is, build the right thing, build it well, and protect it
appropriately. To reach such a goal requires a dynamic, whole system, whole lifecycle
perspective.

At Sandia National Laboratories, the term “information system surety” has been coined to
convey this idea. The term “surety” is borrowed from the realm of nuclear weapons,
where it refers to safety, security, and use control. Information system surety has a
broadly analogous meaning and can be defined as “ensuring the correct operation of an
information system through the integration of appropriate levels of access control,
integrity, utility, availability, and safety.” The focus is on integrating and balancing
surety domains or objectives that are traditionally treated separately. The surety
objectives are briefly defined as:

e Access control -- confidentiality, privacy; control of knowledge of information or use
of resources

Integrity -- completeness, validity, authenticity

Utility -- fitness for a purpose, correctness

Availability -- accessible and usable when and where needed

Safety -- freedom from harm to persons or property

The key to surety in an information system is identifying and mitigating the risks of
system failure. Such a goal requires a balance of potentially conflicting surety objectives.
For example, availability requirements may compete with access control requirements.
Risk is never zero; residual risk must be understood before its importance can be judged
and a decision can be made regarding what, if anything, to do about it. An understanding
of system risk will also guide assessments of how available technologies may provide
increased system surety.

A technique is needed that aids in identifying the most important surety issues given the
specific use for which a system is intended. Sources of risk must be determined.
Potential consequences resulting from system failure must be identified and prioritized.
Risk mitigation techniques must be analyzed to determine not only their effectiveness at

reducing risk but also any interactions or side effects. Only then can decisions be
supported regarding how to mitigate risk and whether the remaining risk is acceptable.

An interdisciplinary team at Sandia National Laboratories developed a risk-based
quantitative methodology for assessing the surety of information systems. The effort was
funded through the Laboratory Directed Research and Development Program. The
methodology includes not only a risk-based surety evaluation modeling method but also a
framework to guide and support model development.

Clearly, many gaps exist in current knowledge of how to manage and assess risks in
software systems. The work described in this report addresses the development of a
coherent, whole-system framework for reasoning about information system risks at any
desired level of detail. This work is innovative in many ways. It presents a unique
perspective and systematic framework for evaluating system surety problems and
solutions. It transcends the traditional security approach which is rooted in compliance
with dictated solutions. It broadens the scope to encompass access controls, integrity,
availability, utility, and-safety. It expands the view to include the operational system, its
development and maintenance, its architecture and interfaces, and state changes. It
allows an exploratory, iterative, risk analysis completely tailored to the system at hand. It
transcends current mathematical risk analysis approaches in order to provide residual risk
information in a form that is useful for improving the system surety and for refining the
analysis. It emphasizes appropriate mathematics and uncertainty analysis to ensure that
risk calculations are meaningful. This work brings the effectiveness and formality of the
Probabilistic Risk Assessment field to bear on the problem of software system surety in a
rich and powerful way, which opens the door for new development and assurance
paradigms based on quantitative risk mitigation.

2 VIEWS OF RISK IN SOFTWARE SYSTEMS

For purposes of discussion, we view the progression of thinking about risk management
and assurance in terms of three “generations.” These descriptions are meant to capture
the prevalent views of the times, although there certainly might have been pioneers who
were ahead of the times. Each generation represents a major paradigm shift in the
community - a different take on how to view the problem and its solutions.

2.1 The First Generation (Rated Systems)

The first generation of software system risk management was security- and compliance-
oriented, and required buy-in to a predefined set of risks which was assumed to apply to
all systems. Risk concerns revolved around certain aspects of “CIA” (confidentiality,
integrity, and availability). These views evolved in an environment characterized by
mainframe computers and protection of classified information.

Not only was the set of risks fixed, but the mitigation strategies were dictated. These
strategies included access controls at the system and file levels, encryption for network
transmissions, and disaster recovery planning. Several levels of systems were defined,
where a higher level meant that more of this security model was implemented and/or it
was implemented with more rigor for correctness.

In this generation, risk assessment was, for the most part, missing. Of course, some form
of initial risk assessment occurred which defined the CIA set of risks for all systems.
Beyond that, system-specific risk assessment usually included only site-specific disaster
recovery concerns, and determining which security level applied. There was little leeway
for customized solutions, never mind optimal solutions. A system either did (compliant)
or did not (non-compliant) implement the required strategies.

While restrictive, this approach succeeded in its environment. The first generation made
assurance straightforward for the consumer: buy rated products. It was also
straightforward for the vendor: get rated. The picture was compliance-oriented. A major
problem being encountered, however, is the difficulty of composing rated products into
today’s more complex systems. If it can even be done, it may result in overkill solutions
at unacceptably high cost, or may produce a system of rated components that has severe
flaws.

2.2 The Second Generation (Protecting Assets)

The advent of, first, networks, and then, distributed processing on those networks, was
very problematic for the first generation risk mitigation approach. The techniques that
had been adopted did not easily extend into these more modern environments. Also at
work was concern that the first generation CIA risk model simply did not fit all
applications. A need was felt for system-specific risk assessment. Other fields, such as
nuclear power, weapons, and aviation, were taking a systems view and using analytical
risk analyses; their success provided encouragement for a risk-assessment approach. Asa
result, a new view of risk has emerged for software systems, and the National Institute of
Standards and Technology (NIST) played a prominent role in prompting this view to
coalesce [NIST, 1991] . This new view is based on the following system components:

e vulnerabilities

threats: active, passive

assets: data, hardware, software

impacts: disclosure, destruction, modification, unavailability

types of mitigation: avoid, transfer, reduce threat, reduce vulnerability, reduce
impact, detect & respond, recover

This emerging view of risk is expressed: “A threat is realized through a vulnerability,
which impacts an asset.” This more general view of risk, to be applied on a system-by-
system basis, represents a major advance.

Independent of the NIST model, Parker [Parker, 1991] has expanded the above assets list
by breaking software into applications and operating systems, and adding users, renaming
the list “levels of abstraction”. He has also evolved CIA into a list of “security
attributes” consisting of confidentiality, authenticity, integrity, utility, availability, and
possession. These two lists form the axes of a matrix for exploring risks and
countermeasures related to protecting assets.

Little progress seems to have been made beyond these definitions, though, and this is due
to two major roadblocks. First, the software community doesn’t know how to measure
the risk mitigation achieved by a design, and thus, how to draw any conclusions about
assurance. Second, the community lacks a coherent framework for assessing tradeoffs
among various concerns and the interactions among their mitigators.

But developers are increasingly rejecting the underlying mindset that the first generation
approach of complying with orders actually provides the needed surety. The second
generation risk model represents a positive trend toward assessing a system’s actual
surety needs. Unfortunately, no one has yet proposed an assurance technique for this
model. The Federal Criteria [Fed. Crit., 1992] and Common Criteria [Common Crit.,
1994] may provide a step in the direction of customized risk mitigation, but it’s still
within the rated product approach. Many emerging software development techniques
which contribute to higher integrity systems are not addressed by either the second
generation risk model or the Federal Criteria. As long as there is not an assurance
technique that credits good practices, developers will unfortunately sacrifice doing things
right in order to apply scarce resources to doing things that are measured.

Risk assessment tools for software systems have appeared on the market in recent years.
However, many of these are simply computerized checklists which measure compliance
with the first generation’s prescribed risk mitigators. Others are more aligned with the
second generation view; however, many of these take the assets-protection viewpoint to
an extreme and focus on computing Annualized Loss Expectancy, converting all assets to
dollar equivalents. Tools are still badly needed that help quantify risk mitigation in a
useful manner, and that can deal with the interactions among risks and mitigators.

2.3 The Third Generation (Managing Risk)

We believe the software community is standing on the brink of a third generation. While

the viewpoint has shifted from rated systems to protecting assets, one more shift is

needed, to managing risk. The third generation of risk management will be characterized

by:

¢ A fundamental change of perspective to one which more fully facilitates total risk
management

e Emphasis on correct system operation through appropriate levels of utility, access
control, integrity, availability, and safety

¢ Consideration of actual threats, inherent vulnerabilities, and the feasibility and
cost/benefit of safeguards as the basis for making system decisions.

This generation will have a dynamic, whole system, whole lifecycle perspective: build
the right thing, build it well, and protect it appropriately. This is what we really care
about.

Providing a viable framework is key; we must have a useful underlying perspective on
risk assessment and risk management within which to work. It is imperative that enough
effort be devoted to deriving a good framework, for this is the foundation, the view into
the problem space, that colors how we are able to see solutions. For example, while a
narrow view of sabotage might focus on virus protection in an operational system, a
whole lifecycle view will encompass protection throughout design, implementation,
delivery, and maintenance. And while a narrow view of network security might focus on
encrypting communications, a whole system view will explore whether network nodes
have compatible security policies and whether they exchange sufficient security
information to uphold the policies. And while a narrow view of integrity might address
mechanisms within a properly operating database, a dynamic view will also look at
shutdown-startup synchronization issues. The work described in this report focuses on
developing a third generation framework, and a methodology for achieving risk
management within this framework.

Some parts of the community have already adopted a risk management mindset,
especially where software safety is concerned. They are using risk reduction as a basis
for design decisions, sometimes following fault or event tree types of thought processes
to identify risks, and documenting each of the chosen risk mitigators along with a
qualitative estimate of the mitigation it achieves. This is an excellent start. We are
addressing these advances: that safety and security and dependability must and can be
considered together within a single context; that each risk and its mitigators need not be
addressed in isolation from others (which ignores the reality of serious interactions); that
we can begin to quantify; and that better guidance, specific for software systems, can be
provided to the art of the analysis. These advances are non-trivial, but are necessary for a
true third generation environment.

Availability of third generation tools means that software system design and redesign can
be carried out with a full understanding of how security and other risks have been
mitigated, and with conscious acceptance of remaining risk. It also provides a
documentation of original surety requirements and design choices, and allows future
system enhancements and changes to be evaluated for their effect (either positive or
negative) on system surety. It facilitates a risk analysis completely tailored to the system
at hand, instantiating its threats, its barriers to those threats, its needs for risk reduction,
and the interactions among all these elements. The previous generations’ views of
software system risk management have been too narrow in scope to support development
of such comprehensive tools.

3 CURRENT APPROACHES TO RISK ASSESSMENT FOR
INFORMATION SYSTEMS

Researchers and practitioners currently disagree about the usefulness of existing and
proposed techniques for assessing risk. The underlying issue is the problem of predicting
the surety of a software-based system, and the effectiveness of a method for obtaining
surety.

3.1 The Case for Probabilistic Risk Assessment

We believe that an integrated systems methodology entailing probabilistic risk
assessment (PRA) offers the best means for addressing the problems in software surety.
PRA must be an intrinsic part of any competent process for producing software systems
for several reasons.

First, software is often an essential part of systems for which a probabilistic requirement
may be stated (e.g., the probability of a very serious accident attributed to the system
must be less than some acceptable threshold), and stating that the designers used good
engineering practices to preclude serious accidents does not tell us how well they
achieved their objective. Accepting a system on this basis implies a high level of trust
that these practices always yield systems that are trustworthy to the desired level. Such
trust is unwarranted for real, complex software systems since various accidents (some
catastrophic) have occurred.

Second, an analysis that quantifies the attainment of some surety level requires the
explicit statement of the probabilistic model used and hence the underlying assumptions
about which events are credible, the cause-effect relationships among system
components, the sensitivity of the model to variations in the parameter values, etc. The
development of the model forces one to recognize what is not well understood about the
system and problem environment, especially when one makes simplifying assumptions.
This type of rigorous model can be scrutinized for errors and unwarranted assumptions
and exercised to determine the effect of different assumptions.

Third, engineering for surety is a matter of choosing the right compromise and selecting
between alternative designs which include different compromises. The only rational way
to choose the best among alternative designs is to model the effects of the design
candidates on system surety and compare them. The model makes explicit the decision
criteria, right or wrong, for design selection.

In the following sections we present brief evaluations of common PRA methods such as
fault tree and event tree analyses. We found that none of the common methods were
appropriate to all aspects of the information system surety problem. We also found that,
while the thought process for evaluating most aspects of surety began by looking for
ways that the system’s proper “process flow” could be disrupted, diverted, or caused to

exhibit undesired behavior, most of the common methods did not support such a
modeling approach. For these reasons, we examined more generalized directed graph
techniques and found that influence diagrams provided a good point of departure for our
risk assessment studies.

3.2 Analysis Techniques: Relative Strengths and Limitations

Certain analysis techniques have proved durable because they have been able to represent
and be used to examine important classes of problems and types of systems. We shall
discuss some of these techniques, starting with the premise that the problem attributes
and system characteristics determine which technique would be most applicable or
powerful for any given situation. The reader is assumed to possess a fundamental
knowledge of the basic model structure and mathematics underlying each technique.
Interested readers may refer to the ample textbooks and sources in the literature for
discussion of such basics. Here we will focus on the relative strengths and limitations of
the techniques experienced thus far.

First we discuss several techniques created for analyzing the reliability and safety of
physical systems: failure modes and effects analysis, reliability block diagrams, fault
trees, and event trees. These techniques involve models of cause and effect. Their
extension to software systems poses a challenge and requires definition of rules for
problem decomposition. However, these techniques are well understood and have proven
useful in other industries.

Failure Modes and Effects Analysis (FMEA). FMEA and its extension to failure
modes, effects, and criticality analysis (FMECA) are the most elementary of the
techniques. They are used to analyze the consequences of component failures and are
largely qualitative analysis procedures, consisting of tables constructed for the system
components and the possible failure modes of each component. Typical information
elicited in a FMEA or FMECA include component description, failure mode, effect of
failure, cause of failure, occurrence, severity, probability of detection, risk priority, and
existing or proposed corrective actions. FMECA then adds a formal criticality analysis to
rank the results. Both FMEA and FMECA are subject to the same strengths and
limitations as event trees, and tend to be very time consuming and hence expensive to
perform. Moreover, FMEA and FMECA lack a model infrastructure for integrating the
component information collected in the various tables. Finally, doing a FMEA or
FMECA on software may not be realistic because of the extremely large number of
possible software outputs and behaviors that would usually have to be considered.

Reliability Block Diagrams. In a reliability block diagram, blocks represent system
components. They are connected together to represent failure dependencies. If the failure
of any of a set of components will cause the system to fail, a series connection is
appropriate. If the system will fail only if all components fail, a parallel connection is
appropriate. More complex topologies are also possible since failures in real systems are
usually more complex than can be represented by building diagrams from series and

parallel parts. Analysis of a reliability block diagram in the most general case is
complicated. (Complex reliability block diagrams can also be transformed into fault trees
and solved by standard fault tree solution techniques.) The advantages of this model are
its simplicity as a visualization tool (akin to a system block diagram) and straight-forward
solution when the model can be constructed from series and parallel components.
Limitations of the model are the assumptions that component failures are statistically
independent and that failures are constant over time.

Fault Tree Analysis (FTA). FTA is a deductive hazard analysis technique which
considers a system failure and then provides a top-down approach to reason about the
system or component states that contribute to the system failure. FTA starts with the
definition of a particular undesirable event as the "top event" of the tree. The system is
then analyzed to determine all the likely ways in which the undesired event could occur,
and the fault tree is developed by successively breaking down events into lower-level
events that generate the upper-level event. Hence the fault tree model is a logical
representation of the various combinations of events that lead to the undesired event. The
faults may be caused by component failures, human error, environmental conditions, or
any other event that leads to the undesired event. It should be noted that a fault tree is not
a model] of the system or even a model of the ways in which the system could fail. Since a
fault tree is comprised of two elements, logic gates and events, a fault tree is thus a graph
of the logical interrelationships of basic events that may lead to the "top event." As for
the strengths of the technique, FTA provides a systematic framework for keeping a
problem tractable in that the model is only concerned with failures that lead to a
particular undesired event. FTA also helps the analyst to be complete "categorically" in
examining the various failures. On the other hand, fault trees do not handle dynamic or
time-dependent events very well and may not reveal consequences of events occurring in
the middle of the tree. Also it should be noted that FTA assumes that basic events are
mutually independent. Thus if the fault tree model fails to explicitly account for potential
common mode and common cause failure mechanisms, the fault tree solution can yield an
unrealistically optimistic (low) top event probability.

FTA has been extended to software systems where fault trees may be built for a given
system based on the source code for that system [Leveson and Harvey, 1983]. The
analysis starts at the point in the code that yields the potentially undesirable outputs. The
code is then analyzed in a backwards manner by deducing how the program could have
gotten to that point with the set of values producing the undesirable output.

Event Tree Analysis (ETA). ETA is an inductive hazard analysis technique that
considers a specific fault in some component of the system and examines in a sequential
manner what the consequences of that fault will be. The approach taken is to consider an
initiating event and its possible consequences, then for each of these subsequent events,
the potential consequences are considered. In essence, ETA is forward thinking and
considers potential future problems. The probabilities of the final outcomes are obtained
by multiplying the probabilities of the events comprising the path. For systems for which
little is known, event trees can be very useful for analyzing consequences of individual

components to determine if a mishap might occur and what that mishap might be. ETA
can help determine whether single points of failure exist for the system. At the same time,
the advantage afforded by event trees can also be a weakness of the technique. The
initiating events for ETA may be both desirable and undesirable since a desirable event
could possibly lead to an undesirable outcome. This means that the set of initiating events
is the entire spectrum of events that may occur in the system. Thus much analysis time
may be wasted by considering an event tree from a given event, such as the failure of a
sensor, when that event may never lead to a mishap. It should also be noted that ETA,
like FTA, assumes that event probabilities are independent of one another. Thus, one
must explicitly account for the interdependencies between events in the structure of the
event tree model itself in order to obtain realistic ETA results.

Analysis techniques that provide more refined ways of handling system dynamics and
dependencies will be discussed next.

Petri Nets. A Petri net is a graph-theoretic model that can express concurrency and
asynchronous behavior as information or control flows. The major use of Petri nets has
been the modeling of systems of events where some events occur concurrently, but there
are constraints on the concurrence, precedence, or frequency of these occurrences. A Petri
net consists of circles (called places) representing conditions and bars (called transitions)
representing events. The places and transitions are connected by directed arcs. The
execution of a Petri net is controlled by the position and movement of markers (called
tokens) in the net. The tokens are subject to certain rules and are moved by the firing of
the transitions of the net. A transition is enabled for firing only if there is at least one
token in each of its input places. The transition fires by removing one token from each
input place and placing a new token in each output place. Given this model construct,
Petri nets prove to be very useful in modeling or simulating system state changes caused
by triggering events. The benefits of Petri nets are that they are intuitive, easy to
understand through visualization, and can analyze small systems comprehensively.
However for larger systems (and not necessarily complex ones) Petri nets lose their
scrutability and the system properties become obscured in the graph. The analysis results
show the presence or absence of system operational properties such as hazardous
conditions, system deadlock, or unreachable states and their associated probabilities.
Complete path or "scenario” information is not a natural output of the model.

Markov Models. Markov models are directed graphs that capture the concepts of system
states and probabilistic transitions between states. They provide a natural, direct
representation, through the use of cycles, of systems whose components are repairable
and systems where component failures have interactions. Recall that fault trees and event
trees are acyclic graphs and hence do not readily accommodate these system
characteristics. The two basic forms of Markov models are chains and processes. A
Markov chain uses matrix multiplication in discrete time to obtain the state transition
probabilities; a Markov process uses a set of differential equations over continuous time.
Relative to the other techniques discussed, Markov processes require a more sophisticated
knowledge of mathematics for their solution. In fact most Markov models of real systems

have many states and hence are difficult to solve, requiring simulation. Again, complete
path or "scenario” information is not a natural output of the model.

Formal Methods. This term refers to techniques that have a sound basis in mathematics
and employ an associated mathematically-defined notation. For instance, most formal
methods have set theory and predicate logic as their underlying basis. Formal methods
have been used in two distinct ways: first, for the production of specifications used as the
basis for conventional system development; and second for the development of
specifications which are then used as the basis against which the correctness of the
program is verified. In the first case, the mathematics is used as a documentation medium
that offers the benefit of precision, eliminating the risk of misinterpretation of the
specifications, plus the opportunity to postulate and “prove” certain desired properties of
the specification. In the second case, an additional benefit is provided in which it is
possible to show that the program does what it is specified to do with the same degree of
certainty as a mathematical proof. However, we also note that proof of correctness is not
a trivial task and few practicing software engineers have the necessary skills to use formal
methods.

However the fundamental limitation remains the problem of specification validation; that
is, demonstrating that the requirement specification does not allow executions which
would lead to catastrophic failure in the system's operational context. The real difficulty
1s that there is no way of knowing whether all of the threats and system failure modes
have been identified, so one can never be sure of the completeness of the specifications.
Thus the formalism and mathematics, of themselves, are insufficient to guarantee surety.

From our perspective, the practical benefit from using formal methods is their impact on
the system developers' thinking process. The intellectual exercise increases knowledge of
the software and hence increases confidence in the software. However, there are questions
regarding the extent to which formal methods should be used and how one actually
applies formal methods in practice. Some suggestions for the use of formal methods in
the software development lifecycle of critical systems are made by researchers who
recognize that formal methods today are fraught with limitations reflecting the
immaturity of the techniques themselves and inadequacies of the support tools [Barroca
and McDermid, 1992].

Other Methods. Techniques such as reliability growth models, software fault tolerance
techniques, and software engineering tools are not discussed here since these methods
have been more widely applied in software system surety than the analysis techniques we
covered. The relative strengths and weaknesses of these other methods are already well
described in the literature.

3.3 Surety Evaluation Modeling Methodology

Each of the common analysis techniques described above has its own strengths and
limitations. No single technique can do it all. Analysts should not use modeling tools

10

blindly but must carefully examine each one and understand how it works and what its
limitations are. Rather than justifying one's preferred technique, we should investigate
how the different techniques can positively reinforce each other. It is the combination of
techniques that will lead to better systems, and we need more experience, examples, and
applications of techniques to understand the limits to which information surety can be
assessed.

In searching for good tools to help in risk-based design or risk management of software-
based systems, we noticed an obvious need for improvement in the areas of model
building, flexibility, iterative refinement, and vulnerability analysis. We believe that a
PRA-based tool is best suited to our purposes. To this end, we have adapted a graphical
technique, the influence diagram, to perform quantitative assessments of information
system surety problems. The influence diagram formalism is conceptually similar to
event tree and decision tree formalisms, and it has the advantage of supporting both
backward and forward construction of the model. Conventional influence diagrams do
not, however provide everything we consider important for analyzing information
systems. Therefore, we propose some extensions in notation and a new solution
methodology. We describe influence diagrams and our modifications in detail in section
4.5.

4 METHODOLOGY

In this section we describe our methodology for identifying sources of risk and risk
mitigators and for creating the system risk model.

4.1 Overview

Traditional approaches to the assessment of information systems have often been based
on an ad hoc or piecemeal approach in which individual requirements are generated to
protect against various real or perceived threats. These requirements often relate only to a
particular area of information system surety (availability, security, etc.), but their
combined impact is rarely considered systematically. In addition, current analysis
techniques are limited in the type of flaws they detect and/or in that they require too much
time to perform to be feasible. Assessment of information systems under a total systems
approach would help reduce these problems. We believe that an information system
surety assessment approach should have the following characteristics:

e The approach should not be merely “checklist” or compliance-based, but should
assess the consequences that would occur should the system fail to achieve its surety
objectives (appropriate levels of functionality, security, etc.), and how much a user is
willing to spend to avert those consequences.

e The approach should provide quantitative information with which tradeoffs between
various design alternatives can be objectively evaluated.

11

e The approach should be readily extendible and encourage iterative refinement (i.e., it
should support both “quick-look” studies and the extension of those studies to
arbitrarily greater levels of detail as appropriate).

e The approach should provide guidance to help the analyst ensure that the model
considers all appropriate threats, mitigation strategies, and consequences, and a
quantitative screening technique to help the analyst decide which scenarios can be
legitimately neglected.

e The approach should be easy to use, but powerful enough to cross the boundaries that
currently separate the various domains encompassed by information system surety.

e The approach should be supported by software that would facilitate model
development and automate model solution.

To facilitate system-specific total risk assessment and management, a methodology must
provide the system analyst or developer with:

e assistance in identifying system risks, and therefore surety requirements

e assistance in selecting mitigation techniques (i.e., ways to avoid, reduce, transfer, or
control sources of risk)

e assistance in understanding and quantifying the effectiveness, dependencies, and
interactions of mitigators (the combined impact of each design alternative on correct
system functioning vis a vis surety objectives AND functional aspects of the information
system)

e the ability to tailor the surety model to the specific system

Our framework for assessing and managing risk in information systems provides this
assistance through supporting components -- a Risk Identification Matrix and a Risk
Mitigators Matrix. Our system risk model provides a graphical depiction of potential
system states and the barriers that can affect the probabilities of state transitions. But,
more than that, it is also the formal description over which risk calculations can be
defined. Thus, it is the heart of the analysis method. However, software system
designers and analysts might not be familiar with this kind of modeling, and might have
difficulty constructing meaningful and complete models. Therefore, the two matrices
were introduced as an aid to the model building. The matrices are intended to guide the -
analyst in determining surety requirements, areas of highest consequence, and appropriate
technologies or approaches to address risks. These preliminary matrices provide support
for development of a system risk model which can be analyzed to aid in system design
decisions regarding risk mitigation and acceptance.

The components are used in a risk assessment process which involves:
Building a system risk model, using input from the matrices
Analyzing risk mitigators

Running the analysis engine

Evaluating remaining risk and refining the analysis through iterations

In our description of the process, the analyst is that person who is carrying out an
analysis, whether it be on paper or using the software tools. In reality, many people may

12

be involved in various aspects of an analysis - supplying individual expert opinion,
reaching consensus as a team, supplying input, interpreting output, etc. We simply
represent their total interaction with the process by the term “analyst”.

The overall process, shown in Figure 1, is for an analyst to build a graphical model of
system risks, using the risk identification and risk mitigators matrices as guides and
sources of information. The analyst quantifies the model by performing a barrier analysis
for each barrier (mitigator) that is to be considered, and a threat analysis for each threat to
be considered. Then an analysis engine is run to compute remaining risk in the system.
The job of the analysis engine is to perform appropriate computations on all quantified
input from the analyst, and to return information on weaknesses in the system. If cost
information is incorporated, then the analysis engine may return cost/benefit information
as well. The remaining risk is evaluated and if it is unacceptable, modifications are made
and the process is reiterated. The initial model should be at a high conceptual level and
address only the highest risks. The analyst should then iteratively refine the model and
re-run the analysis until useful levels of detail are achieved throughout the model, and all
relevant risks are incorporated. The result of this process is a risk assessment and a risk
management strategy for the system.

Figure 1. Risk Assessment Process

4.2 Supporting Components

4.2.1 Risk Identification Matrix

The Risk Identification Matrix (Figure 2) provides a framework for the analyst to
determine the most important risks to the system based on

13

e the surety objectives for that system (rows in the matrix),
e aspects of the system that may give rise to risks (columns in the matrix), and
e consequence areas of particular concern (not shown in Figure 2).

m | Information

- Processes/

»

‘Tansaction

T State Changes

P ;::1nterfaces' 1

] eavesdropping
] e access control

¢ authent. failure

e system break-in

e OS blacks
features

e access by repair

personnel

o different
surety policies

e subversion

failure o spoofing e passwords e abnormal event across
exposed on net interfaces
e input error e repudiation e untrained users | e incomplete e bad input
| e unauthor. mod. | e process e DBMS lacks updates due to source
| ® process error diverted integrity check repair time e incomplete

input

e inappropriate

® inappropriate

o multiple copies

eshutdown-startup

® inappropriate

e inaccurate info.

o Utiiity output process on servers not synchronized input source
= 1 e unauth. mod. e unplanned poses update e service prevents | e output
e accidental mod. | environment problem updates misused
- D ® access time too | e system eunreliable ® in maintenance ® power
Availability long overload comm. e sabotage interruption
., .| ® inappropriate e timing design e single points of | e natural disaster | e network
access control fault Jailure service
e sabotage unavailable
. S e incorrect info. ® unchecked e design not fail- | e operation during | ® unchecked
- Saféty e insufficient input or output safe abnormal input
e 1 info. e out of tolerance | e unclear procs. environment

Figure 2. Risk Identification Matrix Example: Medical Decision Support System

The matrix is used to determine surety requirements in terms of perceived risk and
desired risk reduction, in the context of potential consequences and their relative

importance. The cells of the matrix contain sources of risk based on the surety objectives,
system aspects, and consequences that should be considered. The intent is for each cell to

contain the relevant sources of risk for any system, arranged as pieces of a taxonomy.

Surety Objectives. In devising a list of surety objectives that is meaningful for
information systems, our intention is to encourage consideration of the whole system and

its environment. The traditional security categories of confidentiality, integrity, and

availability are not sufficient for this purpose, and we also felt that Parker’s categories
[Parker, 1991] lacked emphasis on correctness and safety. Our categories are not meant
to be exclusive and non-overlapping, but are intended to encourage complete treatment
and expanded thinking about system surety. We chose to address five surety objectives.

14

e Access control encompasses the objectives of confidentiality, privacy, and control of
knowledge of information. It also deals with use of resources in addition to
information/data, such as CPU cycles.

o Integrity addresses completeness, validity, and authenticity, not only of data but also
such aspects as processes and system operation.

e Utility is defined as fitness for a purpose and correctness. It encompasses correct
operation, of the system, data, processes, etc., to achieve the purpose for which the
system is intended.

e Availability implies that the system, data, processes, etc. are accessible and usable
when and where needed.

e Safety can be broadly defined as freedom from harm to persons or property caused by
the information system. Some argue that this category is superfluous because safety
will automatically be achieved when the other surety objectives are met. However,
we feel that there are issues beyond simply meeting individual surety objectives and
that safety merits additional emphasis.

System Aspects. The system aspects that we have chosen to consider deviate from the

typical taxonomies like “information, software, hardware, network, and users”. To

address the goal of “correct operation of the system,” we want to consider broader system

aspects.

e Information or data plays an essential part in system operation.

e Processes or transactions performed by the system can include concerns such as
format, completeness, timing, and guaranteed delivery.

e System composition includes design, architecture, operator/user, networking,
platform, and interoperability issues.

e System states include not only normal operations, but also maintenance, shutdown,
and abnormal or unplanned events, and especially, transitions between states.

e Consideration of interfaces encourages a look at how the system actually functions in
context.

Consequence Areas. Different systems embody different concerns about consequences

of failures to meet surety objectives. This taxonomy of consequence areas can help to

identify and clarify surety requirements and to focus on areas of greatest importance or

impact.

e Mission related consequences are those that affect the functionality of the system and
its ability to fulfill its intended purpose.

o Legal/Regulatory consequences may be important where abiding by rules of outside
agencies 1is an issue.

e Worker Health and Safety issues may arise when an information system is used to
control potentially physically harmful elements.

o Public Health and Safety also deals with physical harm, particularly when it may
not be contained within the area of the business.
Environmental impact may result from problems with the system.

e Political/Social consequences may be paramount, even if no “actual” harm is done
and mission requirements are still being met (e.g., public perception of safety issues).

15

Using the Risk Identification Matrix. The Risk Identification Matrix provides a
framework within which the analyst can define system risks. The row and column labels,
i.e., the “Surety Objectives” and the “System Aspects”, assist the analyst to think through
many different areas of concern. Off-line, the analyst should use whatever views of the
system seem useful. For example, a physical view might be useful for thinking about
risks arising from the system composition. A process flow view might be useful for
thinking about safety risks. The risks captured in the matrix result from the analyst
asking what could go wrong from these various views, and should be stated in terms of an
“undesirable state or event” in the system. If the analyst can further identify states that
might precede or follow the risk state, then he should begin to draw a graph around it.
Severity of the risk in each of the “Consequence” categories should then be estimated on
some scale, such as Low, Medium, or High.

The analyst populates each cell with the relevant sources of risk for the system. Ideally,
if the matrix were fully populated with possible risks, the analyst’s job would be one of
pruning. Realistically, it must be one of pruning combined with supplementing.

The matrix is read:
“There is a [surety objective] risk relative to [system aspect] due to [risk source].”

Examples:

e “There is an [access control] risk relative to [system composition] due to [passwords
exposed on the network].”
“There is an [integrity] risk relative to [information] due to [process error].”
“There is a [utility] risk relative to [state changes] due to [shutdown-startup not
synchronized].”
“There is an [availability] risk relative to [processes] due to [system overload].”
“There is a [safety] risk relative to [interfaces] due to [unchecked input].”

Although the traditional impacts and assets are accommodated within this framework, it
is much broader, giving rise to exploration of system dynamics (state changes),
architecture choices (composition), and correct operation. For a particular system under
analysis, the risk matrix will be pruned by the analyst to contain and prioritize only those
risks of sufficient consequence and likelihood that they need to be mitigated.

The Risk Identification Matrix in Figure 2 shows some potential sources of risk for an

example system; in this case, a decision-support system where a physician uses a

distributed database system to find information on which to base treatment decisions.

The analyst has determined that the primary surety objectives are:

o utility -- the system must fit the intended purpose and perform correctly,

e availability -- the system must be available when the physician wishes to use it, and
access time must meet certain criteria, and

e safety -- the system must not function in such a way as to cause a decision that puts a
patient’s health at risk.

16

In this example, the analyst determines that the sources of risk that are of greatest concern
are those shown in italics in the matrix. For instance, utility is greatly affected by
accidental modification of data, inappropriate processes and input, and update problems.

Ideally, a “universal” Risk Identification Matrix could be created to provide a taxonomy
encompassing all potential sources of risk for information systems. The analyst would

not have to start from scratch, but could choose applicable risk sources of interest. The
matrix and its underlying repository could be developed and updated by domain experts
so that users of the methodology might leverage their efforts.

4.2.2 Risk Mitigators Matrix

The Risk Mitigators Matrix has the same format as the risk matrix, but the cells contain
mitigators, or barriers, corresponding to sources of risk. The intent is that the mitigators
not be limited to hardware and software technologies, but include rules and procedures,
design and development practices, and cover the lifecycle spectrum. Thus credit can be
given for using a proven real-time design architecture, for using a highly-rated software
development methodology, for a trusted path delivery mechanism, for fail-safe design,
etc. The effectiveness of the mitigators can be evaluated in terms of several
characteristics, such as the degree to which technology vs. rules and procedures are
involved, perceived strength, cost to implement, ease of use, outside dependencies, etc.
The analyst selects, and/or adds, mitigators to try out in the analysis. The matrix may
include nominal figure-of-merit values for those mitigators it does contain.

‘| Information | Processes/ | System State Changes | Interfaces
' ‘ | Transactions | Composition |- :
- evisual scan euse a tested and | esynchronize esynchronize suse proven
| soverwrite check | proven process updates on service and input source
L] evdiff” sreputable multiple servers | updates
vendor
1 edesign and test | eplan and test for | eredundancy euse redundant sbackup power
to meet realistic system systems during source
performance usage maintenance
requirements
27 econtrol mods. echeck output stest procedures | emanual override | eprovide input
o .| eaudit mods. before usage for clarity for abnormal checks
o environment

. Risk Mitigators Matrix Example:

17

Medical Decision Support System

In our example, the availability risk relative to system composition due to single points of
failure could be mitigated by redundancy in important (or less reliable) system
components (Figure 3). A different type of risk, an inappropriate process causing a utility
risk, would be addressed very differently. A mitigator might be to use a thoroughly
tested process obtained from a reputable vendor. The effectiveness of this type of
mitigator depends partly on how well we understand what the process will be expected to
do and how well it meets that need.

4.3 Barrier Analysis

Barrier analysis is the instantiation and refinement of a risk mitigator’s ability to mitigate
system specific risks. While the analyst may draw on the Risk Mitigators Matrix for
nominal information on barriers, the information may need to be adjusted or
supplemented to reflect how the barrier will function in the particular system at hand.
Instantiation means the analyst should think about how well the barrier is likely to work
given all that is known about the rest of the system, the way it will be installed, etc. For
example, a very strong password generator becomes very weak if guest accounts are
present, or if it is installed in such a way that it can be bypassed.

The analyst may assess the individual characteristics of risk mitigators: how much
technology vs. how much rules-and-procedures (rap) are involved, perceived strength,
cost to implement, ease of use, outside dependencies, etc. (Figure 4). One could use a
scale of Low, Medium, or High for most of these. For hand analysis, these may all be
considered informally, and a single figure-of-merit for the barrier may be used. This
could be on a scale such as that suggested in section 4.5.5. The analyst must also identify
in the model which risk state transitions are affected by each mitigator.

IBarrier Type Y%tach%rap - Tech'strgth 'Rap strgth Use:-ease Dependencies
removable ‘media - wprevent 0100 : L high : easy

reputable .applicatidn “prevent 25/76" . ‘medium - medium..... - easy vendor processes
do a diff 'on database - érepover\ 25/75 high . mediuh e omedium

do-a visual scan recover /100 . : - low . »<:difficult

overwrite check prevent 75125 “ihigh s medium ":riédium use'with-diff or.scan

Figure 4. Barrier Analysis Spreadsheet

18

4.4 Threat Analysis

The project did not develop the threat agent concept. This concept is suggested for
further development. Threat agents may be active or passive. Active threat agents may
have characteristics such as motivation, skills, knowledge, time and other resources.
They are willing to incur some amount of cost and risk, in order to gain the perceived
value of their target. Passive threats, representing unintentional faults in the system, may
have other characteristics. In either case, as a threat unfolds into the system, the agent’s
characteristics and the system’s surety elements may both be altered by the interactions.
When this concept is developed, then the individual characteristics of the mitigators can
be made to interact with the individual characteristics of the threat agents. Threat agents
can be run through the model as different threat scenarios.

In the absence of the threat agent definition, threat analysis just collapses to assigning
global transition probabilities between risk states. Likewise, the barrier analysis may just
as well be collapsed into a single figure-of-merit versus recording figures-of-merit for
each of the individual characteristics.

4.5 System Risk Model

Before describing our method for building a system risk model, we explain the concept of
influence diagrams.

4.5.1 Introduction to Influence Diagrams

An influence diagram is a probabilistic network that consists of nodes and arcs [Howard
and Matheson, 1984; Jae and Apostolakis, 1992; and Jae ef al., 1993]. It must be singly
connected and acyclic. The nodes can represent system states, decisions, or chance or
deterministic occurrences, while the arcs represent the conditional dependencies between
these occurrences. Decisions are represented by square nodes, while chance and
deterministic events are represented by circular and double-circular nodes, respectively.
These nodes ultimately influence a “value node” (diamond), which quantifies
consequences for each possible system configuration (Figure 5).

Authorized | ——— —_—
Use

Decision Node Chance Node Value Node

Figure 5. Basic Influence Diagram

19

If a chance node is dependent upon other nodes, it represents a set of conditional
probabilities, where the probabilities are conditional upon the results of the node's
immediate predecessors. A deterministic node is a special case of a chance node where
all probabilities are either zero or one. Thus, an influence diagram consists of four
distinct parts: the nodes, the influences upon the nodes (the dependencies between them),
the “function” that determines which probabilities are to be applied given each distinct set
of influences, and the conditional probabilities themselves.

The influence diagram formalism is conceptually similar to the event tree and decision
tree formalisms that are applied in various disciplines of risk analysis. There are three
distinct advantages to influence diagrams for information surety analyses. First, it is
much easier for an analyst to visualize and gain an intuitive understanding of an influence
diagram model than a comparable tree-based model. Second, influence diagrams show
the dependencies between events explicitly, while this information is hidden from the
analyst in event trees and decision trees. Finally, the influence diagram formalism
supports both “backward” and “forward” construction of the model, while event trees and
decision trees can only 'be constructed in the “forward” direction. The “backward” model
construction process is similar to the method used for fault tree development in which an
analyst uses deductive logic to systematically decompose a selected event to determine its
root causes. The “forward” model construction process is used in event tree analysis to
inductively determine the logical consequences of a particular event or set of events. The
influence diagram formalism supports both model construction methods. This flexibility
and power provides an important reason to use influence diagrams instead of either fault
tree or event tree/decision tree methods.

Conventional influence diagrams have three primary disadvantages when applied to
information systems. First, the node symbology, because it is so general, does not reflect
some of the ideas that we believe are important to represent in a risk model of an
information system. Second, the traditional solution method does not show or even
generate the detailed set of scenarios or paths possible in the model [Jae and Apostolakis,
1992; Shachter, 1986]. The ability to examine these paths in detail is a primary
advantage of the event tree and decision tree methods. Finally, the traditional solution
method makes it difficult to determine which nodes are the most important for various
aspects of the results and, hence, to determine where one should look to improve the
system. This very useful information is key to the results of typical fault tree analyses.
We have therefore proposed some extensions to the conventional influence diagram
notation and a new solution methodology to remove these deficiencies.

4.5.2 Building a Risk Model of an Information System

Our objective in modeling an information system is not so much to provide a “probability
of failure” for a system as it is to help identify and prioritize that system's risks. Only
after the risks have been identified and prioritized can an analyst make informed
decisions about whether particular risks are acceptable and, if necessary, examine
strategies to reduce those risks.

20

The starting point for a risk model should be to identify the consequences and benefits
from the proper or improper operation of the information system. One should consider
each “information surety objective” (safety, functionality, availability, confidentiality,
and integrity) as it might affect risk areas such as the mission of the system or
organization; worker health and safety; public health and safety; as well as legal,
regulatory, political, social, and environmental impacts. This assessment helps identify
which system states should be either encouraged or avoided, and forms the basis for the
risk assessment model.

There are many ways to build a risk model based upon an influence diagram, but two of
the most useful are as follows. Under the first method, we explicitly identify the
undesired state and work to find the immediate, necessary, and sufficient conditions for
that state to occur in much the same manner as during fauit tree construction. We
continue to apply these criteria recursively until each event has been resolved into its
fundamental causes along with the system conditions required for these causes to
successfully act upon the system. These fundamental causes (basic failures and initiating
events) will form the starting point in our search for ways to reduce or eliminate
particular system risks.

The second method for developing influence diagrams begins by drawing a diagram to
represent the normal functional flow of the system (including the hardware, software, and
data aspects of the system). We then examine every node to find influences that can
cause the system to deviate from normal functionality toward an undesired state. We add
events to the influence diagram to represent these influences, and seek to find their
fundamental causes in much the same way as would occur for the first method. In
addition, if we suspect a priori that particular events or conditions might lead to an
undesired state, we can use these nodes as starting points (initiating events) and expand
them forward into their universe of logical consequences to determine how they influence
the normal and even the abnormal operation of the system. This shows the value of
working both “forward” and “backward” when developing influence diagram models.

Another powerful feature of influence diagrams is that, like fault trees and other modular
directed graph techniques, they can support iterative refinement. Thus, it is possible to
initially construct a “high level” model for scoping studies using only a few broadly
defined nodes, and to later refine the model to incorporate a more detailed knowledge of
the system, its operation, and its vulnerabilities. It is also possible to construct a model in
which some phenomena are examined only in coarse detail (a “screening analysis”) and
others at a much finer level.

So far, our risk model only considers influences that can lead us toward undesired states.
We must also consider “positive” influences that can reduce the ability of “bad”
influences to accomplish an undesired result. These are called “barriers” because they act
as impediments to undesired outcomes much like a fence system acts as a barrier to
prevent unauthorized access to a facility. Barriers show up as influences (nodes with

21

appropriate arcs) in the influence diagram. Since a barrier node typically depicts whether
a particular barrier is present or active, it is often represented as a chance node that is not
influenced by any other nodes (i.e., an unconditional chance node), where the probability
value represents the likelihood that the barrier is implemented, and not the probability that
it is effective. Barrier effectiveness is modeled in the node that the barrier influences, and
takes the form of the conditional probability that a particular influence will actually cause
the system to deviate from its intended function. This allows us to assess the effects of
multiple barriers on a single “bad” influence both individually and in combination. For
example, we could consider controlling access to a facility using badges, passwords, and
biometrics (e.g., hand measurements, retina scans). Our node that represents the chance
of a person being granted inappropriate access would be influenced by four nodes that
represent: (1) a person trying to gain access (if nobody wants access, we don't have any
risk and don't need any protection), (2) the presence or absence of a badging system, (3)
the presence or absence of a password system, and (4) the presence or absence of a
biometric access control system. The effectiveness of each combination of barriers is
measured by the conditional probability that a person is granted inappropriate access.
This probability varies depending upon which combination of controls (barriers) is in use.

Initiating events, basic failures, and barriers (engineered or otherwise) are not
conceptually different from other chance or deterministic events. However, using
different influence diagram symbols to represent these events would help the analyst to
more quickly assess the completeness of the list of threats (initiating events and basic
failures) and to identify any unmitigated threats (paths without barriers to undesired
consequences). Therefore, we propose to extend the traditional influence diagram symbol
set as shown in Figure 6. We propose using a house symbol to represent initiating events
(as these can be likened to external events in a fault tree analysis, whose symbol they
would share), and a triangle to represent a barrier. A basic failure would be represented
by a circle, as it is essentially a chance occurrence (and is similar to a basic event in a
fault tree analysis, which is also represented by a circle). It is possible to build a risk
model of an information system without these additional symbols. However, we believe
that their use will give additional scrutability and utility to the risk models.

If the influence diagram is to be solved mathematically, we must develop true logical
interrelationships between the nodes as well as quantitative probabilities for those
relationships. The logical relationships can be thought of as an “If — Then — Else If —
Else” block from a computer programming language. The conditions for the “If” and
“Else If” blocks are used to express exactly how this node is related to the nodes that it is
influenced by. The content of the “Then” and “Else” blocks is the probability
information for the current node given that (conditional upon) the specific logical
conditions being satisfied. Visually it is easier for many to enter and understand these
logical relationships in the form of a truth table. This would be our preferred
implementation of the logic definition input software.

22

Decision Node Q Initiating Event Node

O Chance Node A Barrier Node
@ Deterministic Node <> Value Node

Figure 6. Extended Influence Diagram Symbols

4.5.3 Constructing a Sample Risk Model

Consider an application in which a robotic system is to automatically lift and move a
large, heavy object. The system is composed of a crane-type hoist system and an
automated controller (an “information system”). We assume that there are humans
nearby who can intervene in the process should it go awry. However, if we expect them
to intervene, we must develop and implement appropriate procedural instructions.

Our risk assessment begins by identifying the consequences and benefits from the proper
or improper operation of the system. The system designer wants to use an information
system to control the lift activity to reduce the time required to stabilize a swinging load
before it can be set down. Potential consequences include lost productivity (setting the
load in the wrong place so that it must be moved again), worker injury (the load hits or is
set down upon a worker), system unavailability (the system must be operable when it is
needed to prevent lost productivity), and, if the system is to move hazardous loads or
operate near hazardous areas, public safety and environmental issues. While it is beyond
the scope of this paper to develop each of these potential consequences, it is apparent that
the more serious consequences are caused by the system moving, setting, or spilling
something into an undesired location. This consequence will be used as the basis for the
“value” node at the endpoint of our sample influence diagram.

We continue to build the sample risk model by constructing a model of the system's
“normal flow of operation” and looking for influences that can cause deviations from that
normal flow. Figure 7 shows this process in three steps. For this simple example, we
model the system's normal operational procedure as a lift operation, a move operation,
and a set-down operation. These operations must occur in sequence, so each operation's
node on the diagram is influenced by its predecessor in the normal flow of operation.

The next step is to identify the influences that can cause the system to deviate from the
normal flow of operation toward the consequences that we have identified. Step two in
Figure 7 shows a number of influences that can cause this to occur, and the aspects of the
normal flow of operation that they would affect. Owing to space considerations, this list
is by no means complete. Note, however, that the “controller fault” node is not

23

sufficiently detailed for assessment. Thus, we refine this node to incorporate its
underlying causes just as we would successively refine the failures in a fault tree. Note
also that both “initiating events” (e.g., bad software) and “unconditional random failures”
(e.g., controller hardware failure) can influence the system away from its intended
mission.

The third step is to incorporate “barriers” into the model. These influences act to reduce
the probability that a “bad” influence will produce an undesired result. Step three in
Figure 7 shows a number of potential barriers that might reduce system risk. Some
barriers are procedural (e.g., preoperation checklists and visual verification of the
ongoing process), while others are technological (e.g., a fault-tolerant controller hardware
and an automatic position verification tool). The list of barriers should be viewed as
providing design options that can be implemented individually or in combination.

This risk model provides some general modeling insights. First, a single barrier may
affect more than one operation, initiating event, or threat. For example, a preoperation
checklist might act both to identify damaged equipment and to ensure that the load is
balanced. This is easily represented in the model. It is also possible to use more than one
barrier against a single threat. For example, both an automatic position verification tool
and visual monitoring of the process can act as barriers to ensure that an improperly
entered target location does not cause the load to be taken to the wrong location. Finally,
note that this model still contains one “unmitigated threat” in that the initiating event
“bad sensors” is not directly mitigated by any barrier in the model (although, depending
upon the design, the visual monitoring of the process might help to mitigate the effect of a
sensor failure). Upon recognizing an unmitigated threat, a designer can either knowingly
accept the risk posed by that threat or find a barrier to effectively mitigate it. This is,
however, a conscious decision based on an identified risk, rather than a default design
based upon ignorance (as might occur without the information provided by an analysis
such as the one proposed here).

One of our objectives in designing a risk modeling tool is that it be readily extendible.
This sample risk model seems to fit this criterion. The level of detail in this sample
model might be appropriate for a high-level scoping study. If a more detailed study were
required later, one could, for example, break down the “Controller Fault” node into a
greater level of detail. This might identify new fault conditions and initiating events, and
provide an opportunity to include new barriers as the system is better understood. We
believe that models of this type can be extended to an arbitrary level of detail in much the
same way as one would extend a fault tree analysis. This property makes this method a
valuable tool for performing many types of risk assessment studies.

24

Value

Step 1. Establish normal functional flow of the system.

Bad
Location
Entered

Load Not
Balanced

Broken
Crane

Bad

Sensors Software

Control
Hdw.

Step 2. Find influences that cause the system to deviate from normal functionality.

Pre-Operation Visual Verify &
Check-list Manual Stop 2 Double-Check

Entered Data

Auto. Position
Verification Tool

Bad
Location
Entered

Load Not
Balanced

Broken
Crane

Software Operation Checked
by a Supervisory Algorithm

Bad
Software

Bad
Sensors

Redundant or Fault
Tolerant Controller

Control
Hdw.

Step 3. Find barriers to mitigate undesired conditions.

Figure 7. Example Risk Model Construction

25

4.5.4 Risk Matrices and the System Model

The example system model developed for the robotic system made use of a model
construction technique in which we look for deviations from the normal flow of system
operation. This is but one of several methods that can be used to construct the influence
diagram system model. However, the methods we have described so far do not have an
obvious connection to the Risk Identification Matrix and the Risk Mitigators Matrix that
were described in the previous chapter. It is important that there be a consistency
between the matrices and the system model because each represents a different way of
looking at the information surety problem and may identify different surety issues. This
section outlines how the risk identification and mitigation matrices can be used in the
system model construction process, and how the model results can be used to make
additions and refinements to the matrices in an iterative process.

Iterative refinement is basic to the way in which an analysis should be carried out. The
analyst should first work in the context of a high level system risk model, input estimates,
run the analysis engine, and examine the results. High risk paths can then be
strengthened with additional barriers, or can be broken down into more detail. Highly
uncertain paths that are determined to be of sufficiently high consequence call for better
estimates, and they may also benefit from refinement. Once the highest level risks have
been adequately addressed, the analyst may wish to incorporate additional risks into the
model and continue the analysis. The analyst will be able to see the total impact of old
and new barriers on all risks.

The process of performing an information system surety analysis often begins with an
informal assessment of surety requirements and potential problems. As the requirements
are formalized, one could begin to fill out the Risk Identification Matrix and treat it as a
formalized list of potential information surety issues to which the system is to be
exposed. Going through the established process of completing the risk identification and
mitigation matrices provides a preliminary “risk analysis” of the system in much the same
way that a “Failure Modes, Effects and Criticality Analysis” (FMECA) provides
preliminary risk information for certain mechanical systems.

The next step in the analysis is to construct a system model using the influence diagram
technique. The matrices can then be examined to determine whether each of the
identified sources of risk and barriers is found in the system model (either as an
individual node or as a combination of nodes) and, if so, whether the interconnections
between the nodes accurately represent both the real system and the issues identified in
the risk matrices. The risk matrices can also be updated based on any new risk sources or
mitigators that were identified during the construction of the system model. Both of these
updating process can spawn new ideas — either for the matrices, the system model, or
both. Thus, this can be an iterative process. When used in this way, the matrices serve as
an essentially independent completeness check for the system model, as does the system
model for the matrices. Automated tools can easily keep the two in sync. This can be
especially useful when constructing the system model based on the “deviations from the

26

nominal flow of operation” method. It assures that risks and mitigators that may not
obviously cause the system to deviate from nominal functionality are still represented in
the system model (matrix view) while still forcing the analyst to make a detailed
consideration of all phases of nominal operation (model view).

There is a second method for constructing a system model in which the matrix
information is used directly during model construction. This method was described
earlier as looking for the immediate, necessary and sufficient conditions for each
undesired condition of the system (without specifically modeling the normal flow of
system operation). Under this method, each risk identified in the Risk Identification
Matrix is either a cause of an undesired condition or is itself an undesired condition.
Thus, we begin construction of the system model by finding all of the undesired
conditions that are either found in or implied by the Risk Identification Matrix. Each of
these conditions is placed in the system model as a node immediately preceding the value
node as it is a direct contributor to our view of the system’s worth as expressed in the
value node. We then examine each node and seek to determine the immediate, necessary
and sufficient conditioris for its occurrence and either connect appropriate existing nodes
or create new nodes as necessary to represent those conditions (influences on whether the
state represented by our node actually occurs). Many of the new nodes that are to be
created will either be found directly from entries in the matrices or be implied by them,
but it is also important at each stage to consider how issues not found in the matrices can
influence the system (these may be factored back into the matrices as appropriate).
Finally, it is important to consider known and proposed barriers at each step that can help
prevent the realization of the undesired state. Again, many of these barriers will come
from the risk mitigation matrix, but we must also consider influences that have not been
identified in the matrix. We continue to apply these steps recursively until each node has
been resolved into its fundamental causes along with the system conditions required for
these causes to successfully act upon the system.

4.5.5 Quantification of Node Probabilities

We have to this point minimized an important facet of the quantitative solution of the
system models: how do we generate real and believable probability values for the nodes
and conditions that we will find in our system models? If the system being analyzed
already exists, it may be possible to collect real operational data for use in the model. If
the system is still under design, it may be possible to collect data for some items from
comparable existing systems or from early development prototypes. It is also possible to
obtain probabilistic information for some types of model nodes by breaking down the
state that the node represents into a series of more basic probabilistic questions that can
be answered directly, with the node probability being derived by aggregating the simple
results. As with all measured and modeled data, the probability values generated by any
of these processes are subject to statistical validity limitations and are based on an
imperfect state of knowledge about the real system. For these reasons it is very important
that the model be quantified in the light of a detailed uncertainty analysis.

27

Frequently a model will contain nodes for which there is no existing data or for which it
is impossible or impractical to collect data. In these cases, the probabilities must be
estimated by experts in the relevant field. This process is known in the literature as
“expert judgment elicitation” and can be as informal as an analyst providing detailed
documentation for what reference materials and models were considered when a
particular probability value was selected. It can also be a highly formalized process in
which subject experts are contracted from the outside, provided with statistical training
(intended to “debias” the experts), and asked to provide formally documented individual
results which are then aggregated across a spectrum of experts and review groups
[USNRC, 1990]. It is especially important for an uncertainty analysis to be performed
when probability values are based upon expert judgment because the uncertainty analysis
results can be used to indicate how sensitive the results are to the particular value chosen
by the experts.

One technique for assisting in the expert judgment process is the method of probability
intervals. Probability intervals can be used to represent our knowledge and uncertainty
about the performance of individual surety components. The performance metric to be
used is the probability of effectiveness of the component performing its intended function
in the operational environment. For example, when security is the surety dimension
being evaluated, the following probability evaluation scheme for safeguards effectiveness
has been successfully used in various applications. The zero to one probability interval is
divided into five regions, and each region is represented by a categorical probability
value:

0.10 - adversary is heavily favored to win

0.25 - adversary is favored to win

0.50 - neutral or competitive situation where either
the adversary or safeguards could win

0.75 - safeguards is favored to win

0.90 - safeguards is heavily favored to win

Adversary Safeguards
Heavily Favored “Neutral" or |} Favored Heavily
Favored Competitive Favored
0 0.1 0.25 0.5 0.75 0.9 1

Figure 8. Probability Interval for Safeguards Effectiveness Evaluation

28

These categorical probability values can be thought of as comprising the region from
which experts might choose a number to assign after they determined which of the five
situations best characterized a particular event. (The boundaries of each region are those
points that are equidistant between each categorical value and its neighbors.) This degree
of numerical differentiation is the kind that can be obtained practically when using expert
judgment probability assessment techniques.

Hence the probabilities of safeguards component effectiveness can be estimated using
these categorical probability values. Let p;(e) be the probability of effectiveness for
safeguards component i. Then p;(e) takes on a categorical probability value of 0.10, 0.25,
0.50, 0.75, or 0.90 depending on the corresponding scenario context. Each probability
estimate corresponds to a well-defined event including the following key details:

o Relevant access and authority characteristics of adversary

e Particular defeat method being employed

e Relevant characteristics of the safeguards guarding against the defeat method

The overall probability of system success in protecting against each scenario is based on
the probabilities of effectiveness of the combination of safeguards components invoked
by the scenario. Let P,(SWin) be the probability of the safeguards system winning
against scenario Xx. Then,

P.(SWin) = 1- [I[1-pe)] where
iel,

pi(e) is the probability of effectiveness of safeguards component i
], is the set of safeguards components protecting against scenario x

Since P,(SWin) is a function of categorical probabilities, its evaluated value can be
interpreted using the same scale. If desired, some function of the P,(SWin)s may be
derived to yield a measure of total system risk.

The notion of categorical probabilities is particularly suited for representing context-rich
environments when there is sparse statistical data, as in safeguards evaluations and safety
assessments which are scenario-based.

4.5.6 Enhanced Methods for Solving Influence Diagrams

Many past applications of influence diagrams have been in the area of decision theory,
where an analyst wants to determine which decision option will lead to the greatest
possible utility or the lowest possible consequences. Thus, influence diagrams have been
solved by successive simplification of the network using arc reversal and node removal
based on probabilistic rules [Jae and Apostolakis, 1992; Shachter, 1986]. The objective
is to obtain a network that consists of only two nodes (one representing the decision and
one representing the “value” -- utility or consequences). Under such a solution method,
the probabilistic and deterministic information is systematically combined until all that

29

remains is the conditional probability that each possible decision will result in each of the
possible outcomes. While this works well for some decision analyses, it provides little
guidance, for example, as to where one might be able to improve the system given
additional resources.

We believe that a risk assessment should provide not only a quantitative estimate of risk
(the reliability of the actual quantitative value is always questioned), but also information
such as a list of the system's most likely and riskiest paths; a ranking of the events, nodes,
probabilities, and uncertainties that figure most prominently in the risk of the system; and
a list of places where improvements in the system will lead to the greatest risk reduction.
Our objective is to develop a solution method that allows us to obtain this information
from an influence diagram. Similar information is routinely generated in event tree
analyses (the list of event tree paths) and in fault tree analyses (the cut set importance
measures). Therefore, we have explored the adaptation of fault tree and event tree
solution methods to influence diagrams.

Other studies [Jae and Apostolakis, 1992] have demonstrated that it is always possible to
translate an influence diagram into an event tree or a decision tree (this is not a one-to-
one translation, as there are often many appropriate event tree representations for a given
influence diagram). The conversion from influence diagram to event tree can be done
using the following process:

1. Make a list of all nodes in the influence diagram. The list may be in arbitrary
order, but must include the final “value node(s).” This list will contain the nodes
remaining to be implemented in the event tree (the “remaining” list). Make a second
empty list. This list will contain the nodes that have already been implemented in the
event tree (the “implemented” list).

2. Move any value node(s) from the “remaining” list to the “implemented” list. If
there is more than one value node, they may be moved in arbitrary order. These nodes
will be the first to appear on the “implemented” list, and will eventually be the last events
in the event tree model (we are building the event tree from the end to the beginning).

3. Make a pass through the “remaining” list. For each entry in the list, examine the
entry to determine whether all of the nodes that are influenced by this node (“downstream
nodes”) are already on the “implemented” list. If this is true, then this node may be
moved to the “implemented” list and placed at the bottom of that list.

4. Make repeated passes through the “remaining” list per the method of Step 3 until
all nodes have been moved to the “implemented” list (the “remaining” list is empty). At
this time, the “implemented” list represents the reverse of the order in which the nodes
will be evaluated in the event tree model.

5. Write the event tree logical input for the last entry on the “implemented” list to
the event tree input file. Remove this entry from the list.

30

6. Repeat Step 5 until the “implemented” list is empty. For each entry (influence
diagram node), we must write the logic that connects this node (event in the event tree) to
the nodes (prior events) that it is influenced by. When the “implemented” list is empty,
event tree representation of the influence diagram is complete.

The typical event tree solution process involves an exhaustive consideration of all
possible paths, with the removal of physically or logically precluded paths. Solving an
influence diagram in this manner is conceptually very simple and generates important
results that cannot be obtained using traditional influence diagram solution methods (such
as successive simplification).

The event tree solution method, while an improvement over traditional solution methods,
does not generate all of the types of event importance information that we would like to
obtain from our risk analysis. We would like to obtain event importance information for
influence diagrams and event trees that are similar to those generated during fault tree
analyses. We have been prevented from doing so because the fault tree importance
measures are all based upon the assumption of binary Boolean variables while event trees
and influence diagrams often contain multi-state logic (i.e., in a fault tree, an event is
either true or false, while in an event tree or influence diagram, the event can take on
multiple discrete values). At Sandia National Laboratories, we have discussed
mathematical methods for developing multi-state event importance measures [A.C.
Payne, Jr., personal communication]. The method, which has been demonstrated on
simple sample problems, can be summarized for binary events as follows and will be later
described for multi-state events:

First, consider each event tree path to be equivalent to a cut set from a fault tree analysis.
Each event that occurs in that path (each probability that contributes to the path) can be
thought of as a basic event in the cut set. If each event tree question is limited to two
possible outcomes, the group of cut sets that represent the event tree paths can
legitimately be examined using all traditional cut set importance measures such as the
partial derivative, risk increase, risk reduction, and Fussell-Vesely importance measures
[Roberts et al., 1981]. Traditional cut set uncertainty analysis techniques (e.g., Monte
Carlo and Latin hypercube sampling techniques) can also be applied without adaptation
[Iman and Shortencarier, 1984, 1986]. Therefore, we can extract all of the information we
need from an influence diagram if we solve it as an event tree, translate the paths into cut
sets, and evaluate them using traditional fault tree cut set importance measures.

The only restriction on this technique is that any event tree that is developed from the
influence diagram must be constructed using only two outcomes per question (binary
events). This does not represent a theoretical limitation on the methodology because
other studies have demonstrated that there exists at least one “binary event tree” for each
“multibranch event tree.” It is, however, a practical limitation on the method because we
may want to let a single node in the influence diagram assume multiple states. For
example, the “Move Object” node in our sample problem might take on the values

31

“Normal Move,” “Too High,” “Too Low,” “Too Fast,” and “Quivering.” We would like
to be able to translate this node into a single event tree question with multiple outcomes,
but are prevented from doing so if we want to obtain event importance information. The
translation from multibranch events to binary events is difficult and results in an event
tree that is far more difficult to understand than the original multibranch tree.

Sandia has conducted some research directed toward developing importance measures for
“cut set” expressions involving nonbinary events. This currently unpublished research
indicates that importance measures similar to the partial derivative, risk increase, and
Fussell-Vesely importance measures can be calculated with only slight modifications in
the computational algorithm from their binary event counterparts. If certain minor
additional computational assumptions are made, a measure that parallels the risk
reduction importance measure can also be calculated for non-binary events. However,
the uncertainty and uncertainty importance analyses for a cut set expression for multiple-
outcome events are complicated by the fact that the probabilities for all outcomes for a
particular event, when summed, must equal one. It has been demonstrated elsewhere that
this problem can be solved using the multivariate Dirichlet distribution [Payne and Wyss,
1994].

4.5.7 Conceptual Example Computation

The influence diagram shown as Step 3 in Figure 7 contains a value node, five chance
nodes, five initiating event nodes, and six barrier nodes. If we apply the method from the
preceding section to convert this influence diagram, we might proceed as shown in Table
1. As each node in the influence diagram becomes an event in the event tree
representation, the event tree for this diagram will have a total of 17 events (questions) --
one for each node in the diagram.

32

Table 1 (part one of four). Conceptual Example Computation

Step 1 Lists - “Remaining” list in arbitrary order with an empty “implemented” list.

Node | Remaining Influ- | Infl. By Implemented

No. ences

1 Pre-Operation Check-List | 8,9 -

2 Visual Verify, Man. Stop |9,10 |-

3 Double-Check Data 10 -

4 Position Verify Tool 10 -

5 Broken Crane 8 -

6 Load Not Balanced 9 -

7 Bad Location Entered 10 -

8 Pick Up Object 9 1,5,12

9 Move Object 10 1,2,6,

8,12
10 Set Down Object 11 2,34,
7,9,12

11 Value - 10

12 Controller Fault 8,9, 13,14,15
10 16,17

13 Supervisory Algorithm 12 -

14 Bad Sensors 12 -

15 Bad Control Hardware 12 -

16 Fault Tolerant Controller |12 -

17 Bad Software 12 -

33

Table 1 (part two of four). Conceptual Example Computation

Steps 2, 3 & 4 Lists - Partially completed moving entries to the “implemented” list.

Note: This snap shot is taken part way through the third pass through the “remaining” list,
immediately before considering Node 8. Our next step is to move Node 8 to the
“implemented” list. This will allow us to move Node 12, which will in turn allow us to move
Nodes 13 through 17 to the “implemented” list. Thus, after the third pass through the list, only
Node 1 and Node 5 will be on the “remaining™ list.

Node | Remaining Influ- | Infl. By | Implemented
No. ences
1 Pre-Operation Check-List | 8,9 - 11. Value
2 Moved during Pass 3 10. Set Down Object
3 Moved during Pass 2 3. Double-Check Data
4 Moved during Pass 2 4. Position Verify Tool
5 Broken Crane 8 - 7. Bad Location Entered
6 Moved during Pass 3 9. Move Object
7 Moved during Pass 2 2. Visual Verify, Man. Stop
8 Pick Up Object 9 1,5,12 6. Load Not Balanced
9 Moved during Pass 2
10 Moved during Pass |
11 Value Node - Moved Initially
12 Controller Fault 8.9, 13,14,15
10 16,17
13 Supervisory Algorithm 12 -
14 Bad Sensors 12 -
15 Bad Control Hardware 12 -
16 Fault Tolerant Controller | 12 -
17 Bad Software 12 -

34

Table 1 (part three of four). Conceptual Example Computation

Step 4 Lists - All entries moved to the “implemented” list.

Note: It took 4 passes through the list to completely empty the “remaining” list. A different
tree may require more or less passes through the list to accomplish this because of how the
nodes are interconnected. The “implemented” list, when taken in reverse order, now represents
an acceptable order for the events in the event tree representation of the influence diagram.
Recall that the events can occur in any order as long as each event comes before any other
event that it influences.

Node | Remaining Influ- | Infl. By | Implemented

No. ences

1 Moved during Pass 4 11. Value

2 Moved during Pass 3 10. Set Down Object

3 Moved during Pass 2 3. Double-Check Data

4 Moved during Pass 2 4. Position Verify Tool

5 Moved during Pass 4 7. Bad Location Entered

6 Moved during Pass 3 9. Move Object

7 Moved during Pass 2 2. Visual Verify, Man. Stop
8 Moved during Pass 3 6. Load Not Balanced

9 Moved during Pass 2 8. Pick Up Object

10 Moved during Pass 1 12. Controller Fault

11 Value Node - Moved Initially 13. Supervisory Algorithm
12 Moved during Pass 3 14. Bad Sensors

13 Moved during Pass 3 15. Bad Control Hardware
14 Moved during Pass 3 16. Fault Tolerant Controller
15 Moved during Pass 3 17. Bad Software

16 Moved during Pass 3 1. Pre-Operation Check-List
17 Moved during Pass 3 5. Broken Crane

35

Table 1 (part four of four). Conceptual Example Computation

Possible Event Tree Questions for the Example Problem

Note: This table is provided as an aid to those who are already familiar with event tree
modeling. It shows the event tree questions that might be asked to correspond to the nodes in
the influence diagram. If the conversion were performed automatically by software, the
questions would likely only contain the node names from the influence diagram or any
supporting comments provided by the analyst.

Question

Q1 | Is the crane broken before the move is started?

Q2 | Is there a pre-operation check-list found any problems with the crane or with the
proposed move?

Q3 | Is there defective software in the controller?

Q4 | Is the controller fault-tolerant to compensate for possible control hardware failures?

Q5 | Is the control hardware in a state of failure?

Q6 | Are all of the necessary sensors functioning?

Q7 | Is there a supervisory algorithm for the controller that can shut down the proposed move
if it sees an unacceptable condition?

Q8 [Considering Q3 through Q7, does the controller function successfully?

Q9 | Considering Q1, Q2 and Q8, is the object successfully picked up?

Q10 | Is the load balanced?

Q11 {Is there an effective procedure to visually verify the load balance and other critical move
and set-down parameters, and stop the move if anomalies are found?

Q12 | Considering Q2, Q8, Q9, Q10, and Q11, is the movement of the load successful?

Q13 | Was a bad final location entered into the controller?

Q14 | Is there an automatic tool available to verify that the final set-down position is in fact a
legal location for this load to be set down?

Q15 | Is there a procedure in place to have the operator manually double-check that the entered
final desired location does not contain errant data?

Q16 | Considering Q8, Q11, Q12, Q13, Q14 and Q14, is the moved object successfully set
down in the right place?

Q17 | Considering Q16, what are the costs and benefits associated with this move?

If each node in this diagram were to be considered a binary event, the theoretical
maximum number of paths through the event tree would be 2! (or 131,072 paths). Using
multiple-outcome events would cause this number to increase rapidly. While the
theoretical maximum number of paths through an event tree may be large, the actual

36

number of paths realized in the event tree solution may be much smaller. The actual
number of paths generated will depend upon such variables as the number of possible
outcomes for each node and whether some paths are precluded based on physical
arguments. For example, if the crane is broken and cannot pick up the object, it is not
possible for the crane to be carrying an unbalanced load. In addition, most event tree
analysis tools allow the user to define a truncation probability so that paths of negligible
probability can be eliminated. This allows the analyst to concentrate on inferring results
from a number of paths that, while still quite large, is at least manageable.

It is clear that no analyst would want to graph an event tree with more than a couple of
hundred possible end states — even with the assistance of an event tree graphics software
tool [Camp and Abeyta, 1991]. Sandia's SETAC event tree analysis code suite [Wyss
and Daniel, 1994], which is based on the EVNTRE code [Griesmeyer and Smith, 1989]
provides an automated nongraphical facility for efficiently processing these large event
trees. There is not yet a facility for converting the paths obtained by SETAC into cut sets
for the performance of the cut set importance analysis described earlier. However, upon
the development of such software, the computation of risk analysis results from a
completed influence diagram would be a simple batch process that would take the
following steps:

1. Convert the influence diagram and its associated logic and quantification
information into an event tree representation as described previously.

2. For an uncertainty analysis, perform stratified Monte Carlo sampling of uncertain
values using the LHS Latin Hypercube Sampling software.

3. For each sample observation generated by the LHS software, solve the event tree
recursively using the SETAC event tree analysis software. SETAC interfaces directly
with LHS, so a single SETAC run will solve the event tree for all sample observations.
During the solution process SETAC must save all relevant path information so that the
event and cut set importance analysis can be performed.

4. Use the path information generated by SETAC as cut sets as the input for a multi-
state importance analysis as described previously using a variant of the TEMAC
importance analysis software.

5. Examine the important cut sets and events to determine where new barriers or
other design features may be required.

If necessary, the analysis process can be repeated in an iterative fashion with new barriers
and risk sources being used to update the risk matrices and to produce a revised system
model for further analysis. Especially in a design-phase analysis, this process should be
repeated until all of the remaining risks are both understood and knowingly accepted by
those who will be responsible for the system and its proper operation.

37

4.5.8 Summary

In this chapter we have seen how commonly used probabilistic risk analysis techniques
can be used to provide insights into information surety issues. We discussed how an
adaptation of the influence diagram formalism can be used as a more natural modeling
tool for these types of studies. The methods described in this chapter are generally
robust, and many have already been implemented in software. Finally, we demonstrated
the major aspects of the methodology on a simple example problem.

5 SOFTWARE TOOL SUPPORT

The development of the software to support the methodology focused largely on how to
obtain all the pertinent information from the user via the user interface. The concept was
that data entered with the interface would be used to generate risk scenarios, and existing
analysis codes could be used to quantify the scenarios. The purpose of the interface was
to facilitate the collection of relevant data and to motivate the user to think about the
problem from multiple dimensions. Our investigations have shown the validity of this
assumption.

The interface was developed using principles that are often specified for the design of
good graphical user interfaces. These principles express how the software does what it is
supposed to do.
e ease of use
graceful error recovery
context-sensitive help at the user’s request
accurate reflection of the methodology
prevention of incorrect data entry
intuitively obvious use (as far as possible)
use of commercial off the shelf (COTS) software for the various components

The specifics of what our risk assessment software should do include the following:

e provide the user with a generic risk taxonomy

o allow the user to create risk taxonomies unique to the information system based on
the generic taxonomy, the user’s input, or both
modify risk taxonomies
archive modified taxonomies
allow the user to specify the risks particular to an arbitrary information system
create a system model (the influence diagram) for the information system from the
specified risks with as little additional input from the user as possible; this activity
will be initiated via a menu pick or a button click and will take the form of a set of
leading questions to ascertain the desired information
highlight scenarios or paths of interest in the influence diagram
highlight risk sources or mitigators of interest in the matrices

38

e analyze the information system to find weaknesses, unmitigated risks,
unacceptable residual risk, areas with significant uncertainties, etc.

¢ indicate conflicting mitigators (i.e., one that decreases the risk in one area but
increases the risk in another)

e save the state of the various risks, mitigators, consequence probabilities,
consequence severities, and scenarios so that the user can vary parameters to gain
additional insights (what-iffing)

e provide a tutorial to explain briefly the unique features of the methodology, how to
use the software, unique vocabulary, etc.

Time constraints did not allow the development of all of these capabilities to their fullest
potential. The following paragraphs describe those capabilities that were developed and
how they function in the tool in its state at the end of our research.

As discussed in previous sections of this report, the methodology involves identification
of the information system risk sources, specification of risk mitigators, creation of the
influence diagram to determine the interactions between the system and the sources of
risk, analysis of the system surety risks, and modification to enhance information system
surety. The goal of risk specification is to capture the significant risks to the system. The
risk matrix contains these risks; an empty risk matrix is shown in Figure 9.

Processes and System
Information | Interfaces | Transactions @ Changes = Composition

Access Control

Integrity
Utility

Figure 9. An Empty Risk Matrix

The risk specification matrix is used to select the sources of risks applicable to the
information system at hand. This matrix has a drop down list box for each intersection of
system aspect and surety objective (Figure 10).

39

Information Interfaces

Processes and
Transactions

ccess Control

Integrity

Utility

Availability]

Safety

Figure 10. A Risk Specification Matrix

When the user clicks the mouse on a drop-down list box, the risks that are potentially
applicable to that system aspect/surety objective intersection are displayed. Figure 11

shows an example of one such drop down.

Processes and
Transactions

Interfaces

Access Control |

Integrity]
power surge
ve- -] power outage
Utility | || trusting hosts
bad input source
— host configured badly
Ava“abi“ty l & || inconsistency among host
“ default host configuration
Safety |

Figure 11. A Risk Specification Matrix with Sources of Risk Displayed

The list boxes in the risk specification matrix are populated with the risks from either the
generic taxonomy or the system-specific risk taxonomy specified by the user, or both.
The taxonomies from which the drop-down boxes are populated would be modified by

40

the user via menu picks or button clicks on the toolbar; modifications would be saved to
user-specified files.

In addition to specifying what the risks sources are, there is a need to quantify the
consequences if these risks are not mitigated, the area to which these consequences apply,
the probability of occurrence, and the severity of the consequence. The dialog box shown
in Figure 12 is used to elicit the severity information from the user. What to capture with
respect to probability of occurrence and how to capture it has not yet been determined.
The display of this dialog box requires the user to take some action.

Consequence Categories

Figure 12. Consequence Area and Severity Assignment Dialog Box

Having selected the risks from the Risk Identification Matrix and specified their
consequences (Figure 12), the risk matrix is populated with the specified risks (Figure 13)

41

Information

Processes and

Interfaces Transactions

State
Changes

Access Control

integrity power outage
trusting hosts
bad input source
host configured badly
inconsistency among hosts
Utility

Figure 13. A Populated Risk Matrix

After the risks have been specified, mitigators need to be identified and their

effectiveness quantified. Not all risks will necessarily require mitigators, although

unmitigated risks may be of particular interest in the analysis results. Through any of
various actions mentioned already (mouse clicks, menu picks, button selections or hot-
keys) quantification of mitigators will be initiated. At this point in the development of
the methodology and software, its existence and an estimate of its effectiveness are the
only parameters quantifying a mitigator. In the future, quantification may include the
mitigator’s strength, its enforceability, and its type (purely procedural, purely technical,

or a combination of both). Ideally, the user should be able to specify and quantify

mitigators at any stage in the analysis of the system. Mitigators are captured in a matrix

very similar to the risk matrix; the user chooses between the risks and mitigators by

selecting one of the tabs in the lower left corner of the screen--System RISKS for the risk
matrix, Risk MITIGATORS for the mitigators matrix (Figure 14).

' b, System RISKS £

Figure 14. Risk Sources or Mitigators Selection Tabs

42

At this point, the software helps the user to think about and generate risk scenarios that
could compromise system surety. The user is prompted for the sequence of events, states
and actions that could lead from an initiating event to an undesired outcome. A series of
questions asked of the user through dialog boxes is used to accomplish this task. These
undesired outcomes are represented in the influence diagram with diamond-shaped
symbols, and the text describing them is the logical negation of the system aspect to
which the risk applies (e.g., lack of information integrity, lack of information utility, etc.)
This set of events is one scenario or path through the influence diagram. There may be
many paths from an initiating event to a value node. Generation of the scenarios or paths
that lead to value nodes is not automatic; the user will be required to make a menu
selection, push a button, etc. It would seem that depicting all of the individual paths
produces an influence diagram that accurately and completely describes the information
system. However, several iterations of the methodology will probably be necessary to
discover hidden sources of risk and interactions among system components.

Having captured the risks, mitigators and sequence of events (scenario) leading to an
undesired outcome, an influence diagram can now be created automatically. The reality,
however, is that automatically collecting this information from a single user with no
expectation of interaction with other human experts is a large, non-trivial task. For this
reason, the created influence diagram should not be assumed to be complete and will
require further iterations with subject matter experts for complete development. Figure
15 shows a section of one such influence diagram. The circles are risks, triangles are
mitigators, diamonds are value nodes (undesired outcomes), and the numbers on the
connecting lines are some measure of the residual risk in the system at that point.

nconssten
’ ;Database

Figure 15. A Partial Influence Diagram

43

The results of the analysis and how those results are presented could vary widely.
However, the minimum set of information to be provided to the user would be the surety
risk in the information system before any mitigation techniques have been applied, and
the residual risk after the mitigators have been included. One way to state the risk
remaining in the system is as a triplet consisting of the scenario or sequence of events
leading to an end state (a path through the influence diagram), the probability of these
events occurring, and the severity of the resulting consequences. The scenarios could be
presented in various forms, although they should always be available in graphical form in
the influence diagram, and highlighted or highlightable in some fashion (flashing path,
bright colors, etc.). How best to present the risk triplet of scenario, probability, and
severity is a subject still under investigation. Experience from the reactor safety arena
indicates that presenting this information in a clear manner to those uninitiated in
probabilistic risk assessment methods is not a trivial matter.

The possibilities for future development of the software are unbounded. However, we
must determine who its users are and what would be most useful to that audience. For
instance, other capabilities and information that some users might find desirable or useful
include the following:

e the ability to query for consequences in a given category (legal, political, mission,

etc.)

e the ability to query for consequences of a given probability of occurrence or a
given severity level (currently specified as low, medium, high or not applicable for
a given category)
the ability to select a path (scenario) through the influence diagram
mitigator parameterizations
interactions of mitigators
unmitigated risks
outcomes of a specified state (scenario, consequences, probabilities and severity)

The software tool was created using all commercial off-the-shelf (COTS) software. The
matrices were created in Microsoft Excel; the influence diagrams were created using
ShapeWare’s Visio drawing package; and the controlling macros, dialog boxes, drop
down list boxes, etc. were created using one of the variations of Microsoft Visual Basic.

6 APPLICATIONS

We exercised various portions of the methodology using several applications, some of
which have been used as examples in preceding sections of the paper. Project limitations
prevented us from performing a complete risk assessment of a complex system, so we
will use different examples to illustrate aspects of the methodology. To illustrate the
influence diagram risk modeling technique, we will use as examples a medical decision
support system and the risk assessment tool itself. To illustrate a method for eliciting
information for constructing a risk matrix, we use an example of a firewall.

44

Medical Decision Support System Application. The Risk Identification Matrix in
Figure 2 and the Risk Mitigators Matrix in Figure 3 represent some of the thought
processes behind understanding what are the important sources of risk for a system using
database information to facilitate medical treatment decisions. To begin construction of a
graphical representation, we consider “utility risks relative to processes/transactions due
to inappropriate processes.” This source of risk is stated in the cell in Figure 2 where the
surety objective “utility” intersects with the system aspect “processes/transactions.” We
have determined that the outcome of this risk has high consequences for our system
because it may result in poor treatment decisions and health implications for the patient.

We will step through the risk assessment process using Figure 16 to illustrate.

Buggy
implementa-
tion
0.05 0.05

Lack of Process
Utility

Authorized I 0.1
Use |

Figure 16. Influence Diagram: Medical Decision Support System

1. Build system risk model, using input from matrices. The value node for the influence
diagram is derived from the cell identifiers -- “lack of process utility.” An initiating
event would be “authorized use” -- simply, someone using the system. Working
backward from the value node, we ask, “What could lead to lack of process utility?”
and derive several risks, which translate into chance nodes. These more detailed risk
sources may come from the Risk Identification Matrix, or they may be added to that
matrix if they are developed in the process of constructing the graphical model.

45

(Adding them to the matrix allows development of a repository of risk sources.)
Next, we consider mitigators, or barriers, for each risk. Again, these may come from
the Risk Mitigators Matrix (e.g., “use a tested and proven process™), or they may be
added to that matrix. In Figure 16, we see that “using a reputable, proven
application” mitigates the risk caused by both “poor decision algorithm” and “buggy
implementation.” “Human factors design input” mitigates “improper interpretation”
and “improper use,” and “improper use” is also mitigated by “user training.”

2. Analyze risk mitigators. We analyze the mitigators by considering the barrier
characteristics illustrated in Figure 4, the Barrier Analysis Spreadsheet. We may use
expert opinion, past experience, uncertainty analysis, etc., to derive probabilities for
each chance node. (In fact, for our example, we simply made them up.) For example,
the probability of a “poor decision algorithm,” before mitigation, was determined to
be 0.5, as shown on the arc between the initiating node and that chance node. After
adding the barrier of using a “reputable, proven application,” that probability goes
down to 0.1, as shown in the chance node as well as on the arc from that node to the
value node.

3. Run analysis engine. We may analyze the model as described in section 4.5.6,
although with this simplistic example we can derive meaningful information by
looking at the diagram.

4. Evaluate remaining risk; refine the analysis. We may decide that the barriers shown
in the graph reduce all risks to acceptable levels except the risk of “improper use,”
which is at 0.4. So we may look for further mitigating techniques to apply to that
source of risk. We then add to the model and matrix (Step 1), determine a probability
for that barrier (Step 2), re-analyze the model (Step 3), and once again evaluate the
remaining risk (Step 4).

Risk Assessment Tool Application. We also applied the methodology to the risk
assessment tool itself and developed an influence diagram model illustrating some of the
most important risks to that system. We considered that we are aiming to provide the
software community a tool for risk management. Surely there are risks in trusting such a
tool -- risk to the user’s mission, and perhaps regulatory or social (embarrassment) risks
as well -- should the tool mislead the user about system risks. Because we want the tool
to be a sound and useful product, we decided to subject it to a risk analysis. Figure 17
shows the resulting system risk graph. Note that the high levels of concern around
modeling, computation, and input are reflected in our basic project approaches, i.e.,
semantic descriptions, flexible tools, matrices serving as libraries, etc.

46

Provide\
Libraries \

o ——

"7 Poor Data
Presentation

User Using

Lack of Process
Utility

Wrong
Computations
0.5

Build
Flexibly,
Experiment

» Imp t-
ation 4‘%:
02 ™ /inconsistent {} /\
Database . T
w ratiohal]
onsisten t
Checks :

Figure 17. Influence Diagram: Risk Assessment Tool

Loss of Process
Integrity

Firewall Application. We examined the information surety issues of a firewall
application to exercise the Risk Identification Matrix as a guide for eliciting the broad
range of risks to this type of information system. For each cell of the matrix, representing
a surety objective in the context of an aspect of the system, we identified surety-related
issues or questions. We found that the taxonomy lead us to consider areas that may not
generally be considered as part of a firewall risk assessment, such as interface issues
(administration and configuration of other machines on the network, availability of source
code) and process issues (poor system design, poor software development, complexity).
The amount of information quickly exploded, even though we had very limited access to
a firewall expert to assist with the assessment.

The risk sources that we derived within the limitations of this project are listed in the
Appendix. The list is organized using the taxonomy of the Risk Identification Matrix --
for each system aspect (column), potential risk sources are listed for each surety objective
(row). We have no reason to believe that this list is complete; even so, it is obviously
large. It is apparent that a completed software tool, such as the one we designed, is
essential for organizing and tracking the information, evaluating severity of

47

consequences for each risk source, identifying mitigators, evaluating mitigators, and
performing tradeoffs, as well as actually constructing a diagram of varying levels of the
system and its risks. A repository for accumulating this type of information, paired with
the software tool for using appropriate subsets to analyze specific systems, would prove
invaluable to analysts for understanding sources of risk and determining the best ways to
mitigate them.

7 CONCLUSION

This report has described a research and development effort consisting of:

e an evaluation of current approaches and techniques for assessing risk in software
systems;

e development of a methodology, technique, and tool to specify surety requirements
and analyze a system’s risks, taking advantage of appropriate aspects of existing
methods and enhancing them where they are lacking;

e application of the methodology, technique, and tool to several types of information
systems.

We described several existing techniques that can be used to assess information system
surety. Our work has shown that, while each has its strengths, none of these techniques
allows a holistic, risk-based approach to the assessment of information system surety.
There is a need for a new method and language for expressing the surety requirements of
a system and analyzing the remaining risk when the system is used for its intended
purpose, and even for unintended purposes.

Our work led to the development of a method, technique, and tool to guide the analyst in
the specification of system risk and analysis of the residual risk after barriers are
introduced. It allows top-down and bottom-up development, allows several different
system views (lists/matrices, process flows, graphical paths), encourages a system-
specific view while providing a generic set of risks, and uses strong mathematical tools to
determine residual risk. It is a probabilistic risk assessment type of tool based on the
influence diagram technique, with enhancements to capture those components that were
deemed lacking but necessary for complete system specification and analysis.

We applied the tool to several types of systems, including a robotic system, a medical
decision support system, a firewall application, and the risk assessment tool itself. The
results from applying the methodology to the tool itself led to many improvements to the
methodology as it developed, especially the focus on flexibility, libraries, appropriate
modeling techniques, and data presentation.

We were successful in developing a methodology with all of the characteristics we

delineated in the early stages of the work (section 4.1)
e [t avoids a compliance mentality and guides specification of actual surety objectives.

48

It provides quantitative information that can be used to evaluate tradeoffs.

It supports iterative refinement.

It allows the analyst to focus on the most important issues, rather than forcing the
inclusion of all risks.

It combines the currently separate information system surety domains.

The software facilitates model development, though project limitations prevented
implementation of an automated technique for model solution.

The methodology also provides the analyst with assistance in the areas we had specified

as essential:

e identifying system risks and surety requirements

e selecting mitigation techniques

e understanding and quantifying effectiveness, dependencies, and interactions of
mitigators

e tailoring the model to the specific system

This approach is an important step in a new direction in the way we analyze information
systems for robust application in today’s rapidly changing computing environments. The
interest it has generated when presented to various audiences (e.g., NIST Workshop on
Dependable Systems, 1994; New Security Paradigms Workshop, 1995) is one indication
of the utility of the method.

49

REFERENCES

Barroca, L. M., and J. A. McDermid, "Formal Methods: Use and Relevance for the
Development of Safety-Critical Systems," The Computer Journal, Vol. 35, No. 6, 1992.

Bodeau, D. J., and F. N. Chase, “Modeling Constructs for Describing a Complex System-
of-Systems,” Ninth Annual Computer Security Applications Conference, Orlando,
Florida, December 6-10, 1993.

Camp, A. L., and L. P. Abeyta, “SANET 1.0 User's Guide and Reference Manual,”
SAND91-2864, Sandia National Laboratories, Albuquerque, New Mexico, 1991.

Common Criteria for Information Technology Security Evaluation, Common Criteria
Editorial Board, Draft version 0.6, April 22, 1994.

Dobson, John, Centre for Software Reliability, University of Newcastle, personal
communication, August, 1995.

Federal Criteria for Information Technology Security, Draft Version 1.0, December
1992.

Fortney, D. S., and J. J. Lim, “A Technical Approach for Determining the Importance of
Information in Computerized Alarm Systems,” Proceedings of the 17th National
Computer Security Conference), Baltimore, MD, October 11-14, 1994,

Griesmeyer, J. M., and L. N. Smith, “A Reference Manual for the Event Progression
Analysis Code (EVNTRE),” NUREG/CR-5174, Prepared by Sandia National
Laboratories for the U.S. Nuclear Regulatory Commission, Washington, DC, 1989.

Howard, R. A,, and J. E. Matheson, “Influence Diagrams,” Readings in the Principles
and Applications of Decision Analysis, p. 721, edited by R. A. Howard and J. E.
Matheson, Strategic Decision Group, Menlo Park, CA., 1984.

Iman, R. L., and M. J. Shortencarier, “A FORTRAN 77 Program and User's Guide for the
Generation of Latin Hypercube and Random Samples for Use With Computer Models,”
NUREG/CR-3624, Prepared by Sandia National Laboratories for the US Nuclear
Regulatory Commission, Washington, DC, 1984.

Iman, R. L., and M. J. Shortencarier, “A User's Guide for the Top Event Matrix Analysis
Code (TEMAC),” NUREG/CR-4598, Prepared by Sandia National Laboratories for the
US Nuclear Regulatory Commission, Washington, DC, 1986.

Jae, M., and G. E. Apostolakis, “The Use of Influence Diagrams for Evaluating Severe
Accident Management Strategies,” Nuclear Technology, Vol. 99, pp. 142-157, 1992.

50

Jae, M., A. D. Milici, W. E. Kastenberg, and G. E. Apostolakis,, “Sensitivity and
Uncertainty Analysis of Accident Management Strategies Involving Multlple Decisions,”
Nuclear Technology, Vol. 104, pp. 13-36, 1993.

Leveson, N. G., and P. R. Harvey, "Analyzing Software Safety," IEEE Transactions on
Software Safety, SE-9(5):569-579, September 1983.

Lim, J. J., An Analysis of the Risks of Data Aggregation via SecureNet, SAND95-8652,
Sandia National Laboratories, CA, June 1995.

McDermid, J. A., “Issues in Developing Software for Safety Critical Systems,”
Reliability Engineering and System Safety, 32 , 1991.

Nijssen, G. M., and K. W. Yunker, Universal Informatics Workshop Material, Nijssen
Adviesbureau voor Informatica, The Netherlands, July 1993.

NIST, Proceedings of the 4th International Computer Security Risk Management Model
Builders Workshop, Sponsored by NIST and the University of Maryland, August 6-8,
1991.

Parker, D., “Restating the Foundation of Information Security,” Proceedings of the 14th
National Computer Security Conference, Washington, DC, October, 1991.

Parnas, D. L., et. al., “Evaluation of Safety-Critical Software,” Communications of the
ACM, Volume 33, Number 6, June 1990.

Payne, A. C., Jr., and G. D. Wyss, “Coherent Sampling of Multiple Branch Event Tree
Questions,” paper presented at PSAM-II, San Diego, CA, 1994.

Renis, T. A., R. A. Saleh and A. Sicherman, “Validating Detection Probabilities for the
ASSESS Insider Database,” Proceedings of the Institute of Nuclear Materials
Management 31st Annual Meeting, Los Angeles, CA, July 15-19, 1990.

Roberts, N. H., W. E. Vesely, D. F. Haasl, and F. F. Goldberg, “Fault Tree Handbook,”
NUREG-0492, US Nuclear Regulatory Commission, Washington, DC, 1981.

Shachter, R. D., “Evaluating Influence Diagrams,” Operations Research, Vol. 34, p. 871,
1986.

US Nuclear Regulatory Commission (USNRC), “Severe Accident Risks: An Assessment

for Five US Nuclear Power Plants,” NUREG-1150, US Nuclear Regulatory Commission,
Washington, DC, 1990.

31

Wyss, G. D., and S. L. Daniel, “Recent Enhancements to Probabilistic Risk Assessment
Software at Sandia National Laboratories,” paper presented at the DOE EFCOG
Integrated Risk Management Workshop, Albuquerque, New Mexico, 1994.

Wyss, G. D, et. al., “Toward a Risk-Based Approach to the Assessment of the Surety of
Information Systems,” 1995 ASME Pressure Vessels and Piping Conference, Honolulu,
Hawaii, July 24-29, 1995.

PUBLICATIONS, OTHER PAPERS, PRESENTATIONS

Fletcher, S. K., “The Risk-Based Information System Design Paradigm,” Proceedings of
the IFIP SEC’94 Conference, May 1994.

Watterberg, P. A., S. K. Fletcher, R. D. Halbgewachs, R. M. Jansma, J. J. Lim, P. D.
Sands, and G. D. Wyss, “Building a Surety Evaluation Model,” submitted (but not
accepted) to 17th National Computer Security Conference, 1994.

Fletcher, S. K., “The Case for a New Discipline: Information System Risk
Management,” presented at NIST ATP Workshop on Dependable Systems, 1994.

Lim J. J,, S. K. Fletcher, R. D. Halbgewachs, R. M. Jansma, P. D. Sands, P. A.
Watterberg, and G. D. Wyss, “Can Information be Assessed with High Confidence?,”
Poster Paper, High Consequence Operations Safety Symposium, July 1994.

Fletcher, S. K., R. D. Halbgewachs, R. M. Jansma, J. J. Lim, M. Murphy, P. D. Sands,
and G. D. Wyss, CHISSA White Paper, January 1995.

Jansma, R. M., S. K. Fletcher, R. D. Halbgewachs, J. J. Lim, M. Murphy, P. D. Sands,
and G. D. Wyss, “Risk-Based Assessment of the Surety of Information Systems,”

Eleventh International Symposium on the Creation of Electronic Health Record Systems
and Global Conference on Patient Cards, March 1995. '

Wyss, G. D., S. K. Fletcher, R. Halbgewachs, R. Jansma, J. Lim, M. Murphy, and P. D.
Sands, “Towards a Risk-Based Approach to the Assessment of the Surety of Information
Systems,” American Society of Mechanical Engineers Pressure Vessels and Piping
Conference, Topical Meeting “Risk and Safety Assessments: Where Is the Balance?,”
July 1995.

Fletcher, S. K., “A Methodology for Reasoning About Information System Surety,” A
Proposal Abstract, BAA95-15, March 1995.

Wyss, G. D., “Incorporating a Risk Perspective into Information System Surety,”

presented by S. K. Fletcher at the Energy and Environment Sector’s Information
Technologies Day at Sandia National Labs, March 6, 1995.

52

Fletcher, S. K., R. D. Halbgewachs, R. M. Jansma, J. J. Lim, M. Murphy, and G. D.
Wyss, “Software Systems Risk Management and Assurance,” New Security Paradigms
Workshop, San Diego, CA, August 1995.

Fletcher, S. K., R. M. Jansma, J. J. Lim, M. Murphy, and G. D. Wyss, “Understanding
and Managing Risk in Software Systems,” Computer Security Applications Conference,
New Orleans LA, December 1995.

Fletcher, S. K., R. M. Jansma, J. J. Lim, M. Murphy, and G. D. Wyss, “Managing Risk in
Software Systems,” paper submitted to IFIP “95.

33

APPENDIX
FIREWALL RISK TAXONOMY

INFORMATION
ACCESS CONTROL — INFORMATION
There is an Access Control risk relative to Information due to:

wal ware/ e/data:

Are all invalid codes that can reach the firewall checked for? Or, could
information come to the firewall which should cause an error condition
have an unintended consequence to the system? Could this lead to an
access control risk?

Can an unauthorized user/node impersonate a real or even privileged
user/node? Can this be detected or responded to?

When critical data (e.g., passwords to log into firewall-related servers) is
transferred over the network, can it be listened to? If it can, is that data
useful to someone wanting to gain access to these machines?

Was a “back door” account left open by default, by an insider, or by an
unauthorized change to the information in the account database?

Can information from a packet being transferred (or even evaluated for
transfer) by the firewall affect the firewall itself in such a way as to allow
access to the firewall hardware, software, or data (e.g., routing tables)?

e internal network nauthori from the ide:
Can the information in a packet spoof the network into letting unauthorized
outside traffic in or letting inside traffic out to unauthorized destinations?
Can information from the outside get through the firewall and cause a machine
on the inside to grant the outsider “legitimate” access to the internal
network (e.g., commands in a mail message)?

INTEGRITY - INFORMATION

There is an Integrity risk relative to Information due to:

System configuration integrity

Can information in the packets being passed or evaluated for passage cause a
state change in the firewall?

Can the volume of information being processed by the firewall induce a state
change?

Can this state change affect system configuration integrity?

54

I ity of volatile d
Is there any way that the content of the information being processed can
threaten the integrity of other stored data? (e.g., overwrite the wrong RAM
area)
Can a high volume of information to be processed threaten the integrity of
volatile data? (Buffer overruns, etc.)

p i ion) integri

Can a high volume of information to be processed threaten the integrity of
program instructions? (say, a buffer overruns and data overwrites program
segments in volatile memory, or disk caching of packets overwrites
program segments on a system disk)

Can the content of information packets being processed cause either of these?

Can legitimately issued (although errant or malicious) instructions from an
authorized firewall administrator (user) cause either of these? Easily?

p Jata inteeri

See “Program (instruction) integrity” above as the same causes apply here.

tegri 1 eIT IeW
Does the firewall perform any intentional translation that might affect the
integrity of the data being transferred through it? (translation doesn’t work
right, or is incompatible with the downstream use of the data)
Can a software or hardware fault cause the packet to be garbled as it passes
through the firewall?

UTILITY — INFORMATION

There is a Utility risk relative to Information due to:

h
Can the volume of information to be processed by the firewall cause it to fail
to pass some appropriate packets? Fail to pass them in a timely manner?
Can the information content in a legitimate packet cause the firewall to
become confused and not pass the packet? (packet format, address,
suspicious contents, €tc.)
Also, see “Availability” below.

Utility: keeo kes

See “Access Control” above.
AVAILABILITY — INFORMATION

There is an Availability risk relative to Information due to:

55

State changes cause at least momentary unavailability. Can information in the
packets being passed or evaluated for passage cause a state change in the
firewall?

Can the type or content of the information in the packets being passed (or
being evaluated for passage) cause the firewall to refuse to pass further
packets (i.e., “shut down” or fail)?

Can the firewall be induced by information to go into a saturated or overload
state? That is, can the volume of information flowing through the firewall
impact its availability? Does the firewall handle the situation gracefully?

PROCESSES/TRANSACTIONS
ACCESS CONTROL — PROCESSES/TRANSACTIONS

There is an Access Control risk relative to Processes/Transactions due to:

hentication:
based on believing the IP address
reusable passwords
plain text passwords on net (need “advanced authentication” techniques)

o] oo

access controls implemented poorly

administration: (or is this State Changes?)
bad system admin -- overworked, undertrained
administering/maintaining complex firewall configuration
patches
configuration errors
communication between sys. admins and firewall, security guys

spoofing:
spoofing IP addresses -- IP source routing allowed (specify route to and
from server; dynamic ARP, spoof client that is turned off)

spoofing origin of email

testing:

router filtering rules -- complexity and testing

other:
unnecessary applications on firewall
unnecessary accounts on firewall machines

56

INTEGRITY — PROCESSES/TRANSACTIONS
There is an Integrity risk relative to Processes/Transactions due to:

complexity:
administering/maintaining complex firewall configuration
number of systems -- greater #, greater risk
router filtering rules -- complexity and testing

logs:
level of protection of log files
usability of reporting format
inability to detect/stop attacks
other:

malicious software
human executes wrong process

UTILITY — PROCESSES/TRANSACTIONS

There is a Utility risk relative to Processes/Transactions due to:

jesion i)
poor system design
poor software development

hentication:
based on believing the IP address
reusable passwords
plain text passwords on net (need “advanced authentication” techniques)

ol on:

access controls implemented poorly

complexity:
administering/maintaining complex firewall configuration
number of systems -- greater #, greater risk
router filtering rules -- complexity and testing

administration: (or is this State Changes?)
bad system admin -- overworked, undertrained
administering/maintaining complex firewall configuration
patches
configuration errors
communication between sys. admins and firewall, security guys

57

spoofing:
spoofing IP addresses -- IP source routing allowed (specify route to and
from server; dynamic ARP, spoof client that is turned off)
spoofing origin of email

testing:

router filtering rules -- complexity and testing

logs:
level of protection of log files
usability of reporting format
inability to detect/stop attacks

too many privileges for system operator
faulty applications (e.g. sendmail)
process error; unexpected action
unnecessary network services

AVAILABILITY — PROCESSES/TRANSACTIONS

There is an Availability risk relative to Processes/Transactions due to:

complexity:

administering/maintaining complex firewall configuration

system overload:

stupidity, malice, insufficient disk space, . . .

SYSTEM COMPOSITION
ACCESS CONTROL ~ SYSTEM COMPOSITION

There is an Access Control risk relative to System Composition due to:

Access control design faults
Mismatched implementation of policy among system elements
Open windows
Access control info subject to sniffing/eavesdropping/unauthorized access
Policy doesn’t map to platform capabilities
r/ inistrator/User
Unsynchronized configuration management among system elements
Unclear operational processes

58

Changes made without sufficient testing

Networking makes system accessible to hackers

INTEGRITY - SYSTEM COMPOSITION

There is an Integrity risk relative to System Composition due to:

Database (router tables, etc) updates not synchronized
UTILITY — SYSTEM COMPOSITION

There is a Utility risk relative to System Composition due to:

Poor task allocation between user & system

S Inerable o lammi
nchroni 1 nt s
hi i< limiti

Some element limits total system utility
Elements cannot be synchronized

AVAILABILITY ~ SYSTEM COMPOSITION

There is an Availability risk relative to System Composition due to:

OTHER RISKS — SYSTEM COMPOSITION

operating systems:
security of firewall O/S
insecure default host configurations

patches and bug fixes

.rhosts

user-selected passwords

users adding modems

remote users -- through authorized modems only, using “advanced
authentication”

59

insider downloading viruses

T 1 ilities in servers (?
i ing when th osed to; time out

STATE CHANGES
ACCESS CONTROL — STATE CHANGES
There is an Access Control risk relative to State Changes due to:

Access to the firewall hardware/software/data:
Is physical protection of the system maintained during power outages?
Can a state change allow someone to gain privileged access (e.g., root)?
During a state change, is critical or privileged data passed across the network
between the parts of the firewall system? Could it be viewed by
inappropriate persons?
unauthorized access during:
disaster recovery
maintenance
testing
configuration changes
initial setup

1 network nauthorized packets from the outside:
See “Utility” below.

INTEGRITY —- STATE CHANGES
There is an Integrity risk relative to State Changes due to:

m configuration j
Power glitch damages one or more components
Parts of the system lose connectivity with one another
“Real time” problems (loss of synch, time-outs, etc.)
“Domino effect” - one failure causes the failure of other components --
software or hardware failure

il i i r power-down)?

Possible gaps in audit trail (anything not committed to permanent storage)
Revert to out of date program or data on re-boot if program not properly saved

P lata inteeri

Failure to properly close files - ungraceful state change corrupts files

60

Power glitch scrambles CMOS (system configuration data)

P i ion) integr

Program storage damaged or overwritten by non-graceful siate change

fi h the firewall
Packets may be dropped or garbled by non-graceful state change

. inad _— ion during:
disaster recovery
maintenance
testing
configuration changes
initial setup

UTILITY — STATE CHANGES
There is a Utility risk relative to State Changes due to:

Reboot: takes time (system can not pass any packets during reboot) - causes
delay

Any state change may require the loading of new software or data - causes
delay

Packets may be dropped or garbled by non-graceful state change

If continuity is not protected through a state change, may forget about existing
sessions - require that they be re-established (annoying)

If continuity is not protected through a state change, may be spoofed into
thinking an unauthorized packet belongs to a non-existent pre-state-change
session

Is the list of restricted sites (inside to outside or outside to inside) maintained
undamaged through the state change? Can it be subjected to unauthorized
modification or spoofing as a result of a non-graceful state change?

: inad - {on during:

disaster recovery
maintenance

testing

configuration changes
initial setup

AVAILABILITY — STATE CHANGES

61

There is an Availability risk relative to State Changes due to:

Obvious state change: ~
shutdown (planned or unplanned) incapacitates the system
Reboot:
takes time (system can not pass any packets during reboot) - causes delay

Any state change will likely require the loading of new software or data -
causes delay

firewall js down during:
disaster recovery
maintenance
testing o
configuration changes
initial setup

OTHER RISKS - STATE CHANGES
intenance/upgrades/changes:

process for installing patches, fixing vulnerabilities that are discovered
flexibility of the firewall wrt policy, functionality changes

INTERFACES
ACCESS CONTROL — INTERFACES

There is an Access Control risk relative to Interfaces due to:

Iministration: |
admin of other site machines (the firewall doesn’t do it all; and what if it’s
penetrated)

rc vailable for
different surety policies across interfaces
compromise of:

privileged account on firewall

router configuration
network database

INTEGRITY — INTERFACES

There is an Integrity risk relative to Interfaces due to:

62

hosts on network: (or is this System Composition?)
host configured badly; inconsistency among hosts
trusting hosts
default host configurations insecure

power outage

bad input source

compromise of:
proxy gateways to firewall (telnet, X gate, mail gate, name server)
authentication mechanism (e.g., Kerberos serer)
security policy (e.g. users tunneling through firewall)

UTILITY — INTERFACES

There is a Utility risk relative to Interfaces due to:

iministration:
admin of other site machines (the firewall doesn’t do it all; and what if it’s
penetrated)

back door: .
network connections that don’t go through firewall
users adding modems
dial-out modems
SLIP, PPP connections
is modem service effective so they won’t be tempted to cheat?

hosts on network: (System Composition?)
host configured badly; inconsistency among hosts
trusting hosts
default host configurations insecure

policy:
firewall policy incorporated into overall site policy; and all the other policy
stuff -- is there one, is it clear, was it developed before the system . . .;
criteria for adding functionality to firewall

incidents:
incident response plans
detection/response/recovery

other:
source code available for bad guys to study
bad source information -- network database, name server

63

compromise of:
proxy gateways to firewall (telnet, X gate, mail gate, name server)
authentication mechanism (e.g., Kerberos serer)
security policy (e.g. users circumventing firewall via other paths)

AVAILABILITY — INTERFACES

There is an Availability risk relative to Interfaces due to:

power surge

A/C failure

network down

interfacing machines/services down:
Kerberos server
network database
proxy gateways

OTHER RISKS

eavesdropping:
unencrypted email
passwords on network

threat agent motivation:
level of attraction to an intruder

64

DISTRIBUTION:

5 MS 0449 Sharon Fletcher, 9411

5 0449 Martin Murphy, 9411

10 0451 Roxana Jansma, 9415

5 0747 Gregory Wyss, 6412

1 0877 Ronald Halbgewachs, 5931

1 0806 Paul Sands, 4621

1 1008 Peter Watterberg, 9621

1 0451 Judy Moore, 9415

1 0780 Tricia Sprauer, 5838

1 0319 Gary Randall, 2645

1 1436 LDRD Office, 4523

1 9018 Central Technical Files, 8523-2
0899 Technical Library, 4414

2 0619 Review and Approval Desk, 12630

For DOE/OSTI

65

